bertweet-base_ordinal_7_seed42_EN-NL
This model is a fine-tuned version of vinai/bertweet-base on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9585
- Mse: 6.1125
- Rmse: 2.4723
- Mae: 1.5109
- R2: 0.1525
- F1: 0.7447
- Precision: 0.7446
- Recall: 0.7479
- Accuracy: 0.7479
Model description
This is the best-performing model for Dutch irony detection. The model was fine-tuned both a mix of English and Dutch tweets.
The model predicts one of 7 labels indicating for irony likelihood, where 0 is not ironic and 6 is ironic.
When merging for binary classification, we advise mapping labels 0,1,2,3 as not-ironic and labels 4,5,6 as ironic.
Intended uses & limitations
More information needed
Training and evaluation data
The model was trained and evaluated on the TRIC dataset.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 10
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Mse |
Rmse |
Mae |
R2 |
F1 |
Precision |
Recall |
Accuracy |
5.7557 |
0.2141 |
100 |
5.6476 |
7.6297 |
2.7622 |
2.6574 |
-0.0806 |
0.4761 |
0.3859 |
0.6212 |
0.6212 |
5.2388 |
0.4283 |
200 |
5.2492 |
7.1086 |
2.6662 |
2.4741 |
-0.0068 |
0.4761 |
0.3859 |
0.6212 |
0.6212 |
4.9773 |
0.6424 |
300 |
5.0558 |
6.8733 |
2.6217 |
2.3016 |
0.0266 |
0.4761 |
0.3859 |
0.6212 |
0.6212 |
4.7427 |
0.8565 |
400 |
4.8666 |
6.6212 |
2.5732 |
2.1990 |
0.0623 |
0.4761 |
0.3859 |
0.6212 |
0.6212 |
4.6378 |
1.0707 |
500 |
4.6806 |
6.0772 |
2.4652 |
2.0941 |
0.1393 |
0.6773 |
0.6795 |
0.6888 |
0.6888 |
4.3851 |
1.2848 |
600 |
4.6153 |
6.2799 |
2.5060 |
1.9928 |
0.1106 |
0.6915 |
0.6964 |
0.6888 |
0.6888 |
4.3077 |
1.4989 |
700 |
4.5016 |
6.2147 |
2.4929 |
1.9276 |
0.1198 |
0.6882 |
0.6928 |
0.7008 |
0.7008 |
4.2337 |
1.7131 |
800 |
4.2877 |
5.5862 |
2.3635 |
1.8854 |
0.2088 |
0.7183 |
0.7218 |
0.7274 |
0.7274 |
4.2273 |
1.9272 |
900 |
4.3769 |
5.9397 |
2.4371 |
1.8601 |
0.1588 |
0.6994 |
0.6991 |
0.6996 |
0.6996 |
4.0563 |
2.1413 |
1000 |
4.2168 |
6.1013 |
2.4701 |
1.7033 |
0.1359 |
0.7088 |
0.7203 |
0.7238 |
0.7238 |
3.7778 |
2.3555 |
1100 |
4.1356 |
6.1098 |
2.4718 |
1.6562 |
0.1347 |
0.7260 |
0.7269 |
0.7322 |
0.7322 |
3.7206 |
2.5696 |
1200 |
4.2222 |
6.1062 |
2.4711 |
1.7394 |
0.1352 |
0.7245 |
0.7326 |
0.7214 |
0.7214 |
3.7175 |
2.7837 |
1300 |
4.0073 |
5.7021 |
2.3879 |
1.6224 |
0.1924 |
0.7277 |
0.7345 |
0.7382 |
0.7382 |
3.8003 |
2.9979 |
1400 |
4.1116 |
5.8166 |
2.4118 |
1.7346 |
0.1762 |
0.7258 |
0.7268 |
0.7250 |
0.7250 |
3.6247 |
3.2120 |
1500 |
4.1286 |
6.0663 |
2.4630 |
1.6876 |
0.1409 |
0.7309 |
0.7355 |
0.7286 |
0.7286 |
3.4364 |
3.4261 |
1600 |
4.2100 |
6.3353 |
2.5170 |
1.7467 |
0.1028 |
0.7235 |
0.7329 |
0.7201 |
0.7201 |
3.3301 |
3.6403 |
1700 |
4.0403 |
6.0483 |
2.4593 |
1.6357 |
0.1434 |
0.7436 |
0.7442 |
0.7431 |
0.7431 |
3.3634 |
3.8544 |
1800 |
3.9496 |
5.5790 |
2.3620 |
1.6297 |
0.2099 |
0.7259 |
0.7282 |
0.7334 |
0.7334 |
3.4602 |
4.0685 |
1900 |
3.8729 |
5.7334 |
2.3945 |
1.5597 |
0.1880 |
0.7402 |
0.7410 |
0.7455 |
0.7455 |
3.1223 |
4.2827 |
2000 |
4.0417 |
6.3812 |
2.5261 |
1.5875 |
0.0963 |
0.7144 |
0.7394 |
0.7346 |
0.7346 |
3.1337 |
4.4968 |
2100 |
4.0039 |
5.9493 |
2.4391 |
1.6285 |
0.1574 |
0.7389 |
0.7421 |
0.7370 |
0.7370 |
3.1321 |
4.7109 |
2200 |
3.9092 |
5.8926 |
2.4275 |
1.5742 |
0.1655 |
0.7347 |
0.7339 |
0.7358 |
0.7358 |
3.1927 |
4.9251 |
2300 |
4.0312 |
5.9928 |
2.4480 |
1.6140 |
0.1513 |
0.7459 |
0.7540 |
0.7431 |
0.7431 |
2.9806 |
5.1392 |
2400 |
3.9638 |
6.0145 |
2.4524 |
1.5633 |
0.1482 |
0.7524 |
0.7536 |
0.7515 |
0.7515 |
2.9582 |
5.3533 |
2500 |
3.9413 |
5.9409 |
2.4374 |
1.5549 |
0.1586 |
0.7539 |
0.7539 |
0.7539 |
0.7539 |
2.7418 |
5.5675 |
2600 |
3.9578 |
5.9843 |
2.4463 |
1.5525 |
0.1525 |
0.7456 |
0.7476 |
0.7443 |
0.7443 |
2.9866 |
5.7816 |
2700 |
3.8793 |
5.8070 |
2.4098 |
1.5416 |
0.1776 |
0.7426 |
0.7425 |
0.7467 |
0.7467 |
2.8627 |
5.9957 |
2800 |
3.8625 |
5.7805 |
2.4043 |
1.5103 |
0.1813 |
0.7615 |
0.7609 |
0.7624 |
0.7624 |
2.8191 |
6.2099 |
2900 |
3.9342 |
5.9964 |
2.4488 |
1.5211 |
0.1508 |
0.7628 |
0.7622 |
0.7636 |
0.7636 |
2.6259 |
6.4240 |
3000 |
3.9203 |
6.0893 |
2.4676 |
1.5006 |
0.1376 |
0.7487 |
0.7478 |
0.7503 |
0.7503 |
2.8785 |
6.6381 |
3100 |
3.8633 |
5.8444 |
2.4175 |
1.4946 |
0.1723 |
0.7600 |
0.7601 |
0.7600 |
0.7600 |
2.6016 |
6.8522 |
3200 |
4.0736 |
6.2654 |
2.5031 |
1.5923 |
0.1127 |
0.7456 |
0.7518 |
0.7431 |
0.7431 |
2.5155 |
7.0664 |
3300 |
3.9459 |
6.0688 |
2.4635 |
1.5211 |
0.1405 |
0.7584 |
0.7597 |
0.7575 |
0.7575 |
2.6918 |
7.2805 |
3400 |
3.9312 |
6.0072 |
2.4510 |
1.5271 |
0.1492 |
0.7541 |
0.7534 |
0.7551 |
0.7551 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.19.1