Alvin-Nahabwe's picture
update model card README.md
39699a9
|
raw
history blame
2.36 kB
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-lg
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-lg
This model is a fine-tuned version of [Alvin-Nahabwe/wav2vec2-large-xls-r-300m-gn](https://huggingface.co/Alvin-Nahabwe/wav2vec2-large-xls-r-300m-gn) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2283
- Wer: 0.1569
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 22
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2883 | 1.39 | 400 | 0.2180 | 0.2128 |
| 0.2603 | 2.78 | 800 | 0.2108 | 0.2082 |
| 0.2341 | 4.17 | 1200 | 0.2127 | 0.2085 |
| 0.2194 | 5.56 | 1600 | 0.2004 | 0.2050 |
| 0.1846 | 6.95 | 2000 | 0.1961 | 0.1898 |
| 0.1627 | 8.34 | 2400 | 0.1919 | 0.1779 |
| 0.1464 | 9.75 | 2800 | 0.1867 | 0.1677 |
| 0.1273 | 11.14 | 3200 | 0.1949 | 0.1710 |
| 0.1153 | 12.53 | 3600 | 0.1965 | 0.1639 |
| 0.1006 | 13.93 | 4000 | 0.1983 | 0.1603 |
| 0.1056 | 15.32 | 4400 | 0.2159 | 0.1686 |
| 0.1011 | 16.71 | 4800 | 0.2104 | 0.1663 |
| 0.0895 | 18.1 | 5200 | 0.2211 | 0.1634 |
| 0.0818 | 19.49 | 5600 | 0.2234 | 0.1610 |
| 0.0778 | 20.88 | 6000 | 0.2283 | 0.1569 |
### Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3