metadata
library_name: transformers
language:
- ha
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- asr
- ha
- wav2vec2-bert
- speech
- asr-africa
- robust-fine-tuning
- generated_from_trainer
datasets:
- naijavoices/naijavoices-dataset
- CLEAR-Global/Hausa-Synthetic-ASR-Dataset
- google/fleurs
- mozilla-foundation/common_voice_17_0
- benjaminogbonna/nigerian_common_voice_dataset
metrics:
- wer
model-index:
- name: Wav2Vec2-BERT - Hausa - asr-africa
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: naijavoices/naijavoices-dataset
type: naijavoices/naijavoices-dataset
metrics:
- name: Wer
type: wer
value: 0.11443126434701978
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: CLEAR-Global/Hausa-Synthetic-ASR-Dataset
type: CLEAR-Global/Hausa-Synthetic-ASR-Dataset
metrics:
- name: Wer
type: wer
value: 0.11443126434701978
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs
type: google/fleurs
metrics:
- name: Wer
type: wer
value: 0.11443126434701978
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_17_0
type: mozilla-foundation/common_voice_17_0
metrics:
- name: Wer
type: wer
value: 0.11443126434701978
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: benjaminogbonna/nigerian_common_voice_dataset
type: benjaminogbonna/nigerian_common_voice_dataset
metrics:
- name: Wer
type: wer
value: 0.11443126434701978
Wav2Vec2-BERT - Hausa - asr-africa
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the naijavoices/naijavoices-dataset, the CLEAR-Global/Hausa-Synthetic-ASR-Dataset, the google/fleurs, the mozilla-foundation/common_voice_17_0 and the benjaminogbonna/nigerian_common_voice_dataset datasets. It achieves the following results on the evaluation set:
- Loss: 0.7709
- Wer: 0.1144
- Cer: 0.0356
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 100.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.2579 | 1.0 | 3863 | 0.3751 | 0.3166 | 0.0878 |
0.1668 | 2.0 | 7726 | 0.3403 | 0.2865 | 0.0801 |
0.1513 | 3.0 | 11589 | 0.3114 | 0.2763 | 0.0758 |
0.1411 | 4.0 | 15452 | 0.3138 | 0.2775 | 0.0773 |
0.1329 | 5.0 | 19315 | 0.2924 | 0.2577 | 0.0699 |
0.1295 | 6.0 | 23178 | 0.3022 | 0.2673 | 0.0733 |
0.1221 | 7.0 | 27041 | 0.2858 | 0.2571 | 0.0704 |
0.1208 | 8.0 | 30904 | 0.2983 | 0.2620 | 0.0718 |
0.1148 | 9.0 | 34767 | 0.2683 | 0.2491 | 0.0676 |
0.1128 | 10.0 | 38630 | 0.2647 | 0.2416 | 0.0648 |
0.1107 | 11.0 | 42493 | 0.2781 | 0.2548 | 0.0692 |
0.105 | 12.0 | 46356 | 0.2669 | 0.2399 | 0.0651 |
0.1036 | 13.0 | 50219 | 0.2748 | 0.2498 | 0.0689 |
0.1003 | 14.0 | 54082 | 0.2519 | 0.2328 | 0.0621 |
0.097 | 15.0 | 57945 | 0.2537 | 0.2304 | 0.0612 |
0.0949 | 16.0 | 61808 | 0.2671 | 0.2432 | 0.0652 |
0.0917 | 17.0 | 65671 | 0.2470 | 0.2275 | 0.0608 |
0.0894 | 18.0 | 69534 | 0.2664 | 0.2410 | 0.0652 |
0.0872 | 19.0 | 73397 | 0.2532 | 0.2289 | 0.0621 |
0.0845 | 20.0 | 77260 | 0.2590 | 0.2309 | 0.0628 |
0.0813 | 21.0 | 81123 | 0.2533 | 0.2235 | 0.0603 |
0.0791 | 22.0 | 84986 | 0.2486 | 0.2196 | 0.0590 |
0.0766 | 23.0 | 88849 | 0.2450 | 0.2153 | 0.0573 |
0.0737 | 24.0 | 92712 | 0.2391 | 0.2151 | 0.0577 |
0.0725 | 25.0 | 96575 | 0.2388 | 0.2103 | 0.0564 |
0.0669 | 26.0 | 100438 | 0.2347 | 0.2077 | 0.0556 |
0.0646 | 27.0 | 104301 | 0.2334 | 0.1997 | 0.0536 |
0.0607 | 28.0 | 108164 | 0.2530 | 0.2042 | 0.0554 |
0.0594 | 29.0 | 112027 | 0.2357 | 0.1957 | 0.0531 |
0.0553 | 30.0 | 115890 | 0.2497 | 0.1946 | 0.0529 |
0.0533 | 31.0 | 119753 | 0.2480 | 0.1944 | 0.0533 |
0.0495 | 32.0 | 123616 | 0.2506 | 0.1918 | 0.0524 |
0.0468 | 33.0 | 127479 | 0.2438 | 0.1821 | 0.0498 |
0.0445 | 34.0 | 131342 | 0.2578 | 0.1900 | 0.0528 |
0.0415 | 35.0 | 135205 | 0.2455 | 0.1787 | 0.0493 |
0.0393 | 36.0 | 139068 | 0.2615 | 0.1828 | 0.0509 |
0.0377 | 37.0 | 142931 | 0.2692 | 0.1721 | 0.0480 |
0.0346 | 38.0 | 146794 | 0.2640 | 0.1691 | 0.0475 |
0.0321 | 39.0 | 150657 | 0.2698 | 0.1666 | 0.0466 |
0.0312 | 40.0 | 154520 | 0.2790 | 0.1625 | 0.0457 |
0.0291 | 41.0 | 158383 | 0.2819 | 0.1634 | 0.0464 |
0.0276 | 42.0 | 162246 | 0.2794 | 0.1588 | 0.0449 |
0.0255 | 43.0 | 166109 | 0.2777 | 0.1568 | 0.0447 |
0.0241 | 44.0 | 169972 | 0.2910 | 0.1564 | 0.0446 |
0.0226 | 45.0 | 173835 | 0.2960 | 0.1543 | 0.0442 |
0.0209 | 46.0 | 177698 | 0.3081 | 0.1589 | 0.0462 |
0.0202 | 47.0 | 181561 | 0.2955 | 0.1511 | 0.0436 |
0.0192 | 48.0 | 185424 | 0.3025 | 0.1506 | 0.0433 |
0.0182 | 49.0 | 189287 | 0.3109 | 0.1502 | 0.0438 |
0.0165 | 50.0 | 193150 | 0.3240 | 0.1487 | 0.0434 |
0.0156 | 51.0 | 197013 | 0.3171 | 0.1465 | 0.0428 |
0.0151 | 52.0 | 200876 | 0.3327 | 0.1446 | 0.0424 |
0.014 | 53.0 | 204739 | 0.3338 | 0.1470 | 0.0431 |
0.0134 | 54.0 | 208602 | 0.3526 | 0.1431 | 0.0422 |
0.012 | 55.0 | 212465 | 0.3634 | 0.1397 | 0.0414 |
0.0118 | 56.0 | 216328 | 0.3425 | 0.1387 | 0.0412 |
0.011 | 57.0 | 220191 | 0.3449 | 0.1407 | 0.0417 |
0.0104 | 58.0 | 224054 | 0.3670 | 0.1370 | 0.0409 |
0.0099 | 59.0 | 227917 | 0.3684 | 0.1352 | 0.0402 |
0.0095 | 60.0 | 231780 | 0.3701 | 0.1363 | 0.0407 |
0.0088 | 61.0 | 235643 | 0.3810 | 0.1374 | 0.0409 |
0.008 | 62.0 | 239506 | 0.3758 | 0.1341 | 0.0402 |
0.008 | 63.0 | 243369 | 0.3826 | 0.1339 | 0.0401 |
0.0074 | 64.0 | 247232 | 0.3976 | 0.1356 | 0.0406 |
0.0069 | 65.0 | 251095 | 0.4055 | 0.1328 | 0.0398 |
0.0064 | 66.0 | 254958 | 0.3925 | 0.1324 | 0.0399 |
0.0059 | 67.0 | 258821 | 0.4302 | 0.1346 | 0.0408 |
0.0058 | 68.0 | 262684 | 0.4148 | 0.1272 | 0.0385 |
0.0051 | 69.0 | 266547 | 0.4322 | 0.1283 | 0.0389 |
0.0051 | 70.0 | 270410 | 0.4337 | 0.1278 | 0.0385 |
0.0046 | 71.0 | 274273 | 0.4233 | 0.1281 | 0.0389 |
0.0044 | 72.0 | 278136 | 0.4296 | 0.1282 | 0.0387 |
0.0039 | 73.0 | 281999 | 0.4433 | 0.1283 | 0.0389 |
0.0037 | 74.0 | 285862 | 0.4554 | 0.1245 | 0.0377 |
0.0033 | 75.0 | 289725 | 0.4776 | 0.1238 | 0.0377 |
0.0031 | 76.0 | 293588 | 0.4751 | 0.1246 | 0.0380 |
0.003 | 77.0 | 297451 | 0.4818 | 0.1238 | 0.0377 |
0.0027 | 78.0 | 301314 | 0.4832 | 0.1235 | 0.0377 |
0.0025 | 79.0 | 305177 | 0.5077 | 0.1218 | 0.0373 |
0.0022 | 80.0 | 309040 | 0.5017 | 0.1222 | 0.0375 |
0.0021 | 81.0 | 312903 | 0.5185 | 0.1239 | 0.0379 |
0.0019 | 82.0 | 316766 | 0.5278 | 0.1218 | 0.0374 |
0.0017 | 83.0 | 320629 | 0.5240 | 0.1221 | 0.0374 |
0.0016 | 84.0 | 324492 | 0.5542 | 0.1201 | 0.0369 |
0.0014 | 85.0 | 328355 | 0.5452 | 0.1198 | 0.0369 |
0.0013 | 86.0 | 332218 | 0.5652 | 0.1200 | 0.0369 |
0.0011 | 87.0 | 336081 | 0.5699 | 0.1186 | 0.0365 |
0.001 | 88.0 | 339944 | 0.5741 | 0.1190 | 0.0366 |
0.0009 | 89.0 | 343807 | 0.5721 | 0.1202 | 0.0370 |
0.0008 | 90.0 | 347670 | 0.6179 | 0.1177 | 0.0363 |
0.0006 | 91.0 | 351533 | 0.6347 | 0.1176 | 0.0364 |
0.0006 | 92.0 | 355396 | 0.6283 | 0.1164 | 0.0360 |
0.0005 | 93.0 | 359259 | 0.6473 | 0.1170 | 0.0362 |
0.0004 | 94.0 | 363122 | 0.6776 | 0.1162 | 0.0359 |
0.0003 | 95.0 | 366985 | 0.6908 | 0.1159 | 0.0358 |
0.0003 | 96.0 | 370848 | 0.7048 | 0.1157 | 0.0359 |
0.0002 | 97.0 | 374711 | 0.7340 | 0.1151 | 0.0357 |
0.0002 | 98.0 | 378574 | 0.7483 | 0.1150 | 0.0357 |
0.0001 | 99.0 | 382437 | 0.7624 | 0.1145 | 0.0356 |
0.0001 | 100.0 | 386300 | 0.7709 | 0.1144 | 0.0356 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1