Alphatao's picture
End of training
19625f9 verified
metadata
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: fb1ffda1-f53f-4f10-81b7-203461bcc737
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - e3e040151a7be6d4_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/e3e040151a7be6d4_train_data.json
  type:
    field_instruction: text
    field_output: extracted
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/fb1ffda1-f53f-4f10-81b7-203461bcc737
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 3060
micro_batch_size: 4
mlflow_experiment_name: /tmp/e3e040151a7be6d4_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.013473239451800833
wandb_entity: null
wandb_mode: online
wandb_name: 7f20767d-f9c0-42d6-8ba1-0f6d9bdd9674
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 7f20767d-f9c0-42d6-8ba1-0f6d9bdd9674
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

fb1ffda1-f53f-4f10-81b7-203461bcc737

This model is a fine-tuned version of unsloth/Qwen2.5-Coder-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0478

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 3060

Training results

Training Loss Epoch Step Validation Loss
0.7826 0.0001 1 2.1896
0.0552 0.0087 100 0.0724
0.0327 0.0175 200 0.0615
0.0452 0.0262 300 0.0588
0.0337 0.0350 400 0.0561
0.0411 0.0437 500 0.0528
0.0244 0.0524 600 0.0535
0.0323 0.0612 700 0.0510
0.0277 0.0699 800 0.0505
0.0459 0.0787 900 0.0496
0.0495 0.0874 1000 0.0483
0.037 0.0961 1100 0.0482
0.031 0.1049 1200 0.0485
0.0415 0.1136 1300 0.0455
0.031 0.1224 1400 0.0452
0.026 0.1311 1500 0.0455
0.0365 0.1398 1600 0.0478

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1