See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: EleutherAI/gpt-neo-125m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- af1c9fa61fc53b76_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/af1c9fa61fc53b76_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/dd206ec7-9cef-4517-abdc-c03d9ee91679
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2520
micro_batch_size: 4
mlflow_experiment_name: /tmp/af1c9fa61fc53b76_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.013194596548821326
wandb_entity: null
wandb_mode: online
wandb_name: b88ca5d6-0630-4b99-b57a-7ad05d206357
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: b88ca5d6-0630-4b99-b57a-7ad05d206357
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
dd206ec7-9cef-4517-abdc-c03d9ee91679
This model is a fine-tuned version of EleutherAI/gpt-neo-125m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2057
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2520
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
16.9762 | 0.0001 | 1 | 2.2205 |
3.6891 | 0.0086 | 100 | 0.4292 |
3.0828 | 0.0171 | 200 | 0.3583 |
2.4266 | 0.0257 | 300 | 0.3277 |
1.943 | 0.0342 | 400 | 0.3134 |
2.1649 | 0.0428 | 500 | 0.3031 |
2.2397 | 0.0513 | 600 | 0.2885 |
1.4374 | 0.0599 | 700 | 0.2782 |
2.4995 | 0.0685 | 800 | 0.2726 |
1.9345 | 0.0770 | 900 | 0.2634 |
2.1918 | 0.0856 | 1000 | 0.2551 |
1.6604 | 0.0941 | 1100 | 0.2485 |
1.9454 | 0.1027 | 1200 | 0.2454 |
2.3454 | 0.1112 | 1300 | 0.2371 |
1.9632 | 0.1198 | 1400 | 0.2314 |
1.77 | 0.1284 | 1500 | 0.2271 |
1.6156 | 0.1369 | 1600 | 0.2222 |
1.2739 | 0.1455 | 1700 | 0.2173 |
2.0335 | 0.1540 | 1800 | 0.2136 |
1.4027 | 0.1626 | 1900 | 0.2120 |
1.4062 | 0.1711 | 2000 | 0.2094 |
1.878 | 0.1797 | 2100 | 0.2082 |
1.9998 | 0.1883 | 2200 | 0.2068 |
1.4869 | 0.1968 | 2300 | 0.2061 |
1.4694 | 0.2054 | 2400 | 0.2058 |
1.3543 | 0.2139 | 2500 | 0.2057 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for Alphatao/dd206ec7-9cef-4517-abdc-c03d9ee91679
Base model
EleutherAI/gpt-neo-125m