Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: EleutherAI/gpt-neo-125m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - af1c9fa61fc53b76_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/af1c9fa61fc53b76_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/dd206ec7-9cef-4517-abdc-c03d9ee91679
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2520
micro_batch_size: 4
mlflow_experiment_name: /tmp/af1c9fa61fc53b76_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.013194596548821326
wandb_entity: null
wandb_mode: online
wandb_name: b88ca5d6-0630-4b99-b57a-7ad05d206357
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: b88ca5d6-0630-4b99-b57a-7ad05d206357
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

dd206ec7-9cef-4517-abdc-c03d9ee91679

This model is a fine-tuned version of EleutherAI/gpt-neo-125m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2057

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 2520

Training results

Training Loss Epoch Step Validation Loss
16.9762 0.0001 1 2.2205
3.6891 0.0086 100 0.4292
3.0828 0.0171 200 0.3583
2.4266 0.0257 300 0.3277
1.943 0.0342 400 0.3134
2.1649 0.0428 500 0.3031
2.2397 0.0513 600 0.2885
1.4374 0.0599 700 0.2782
2.4995 0.0685 800 0.2726
1.9345 0.0770 900 0.2634
2.1918 0.0856 1000 0.2551
1.6604 0.0941 1100 0.2485
1.9454 0.1027 1200 0.2454
2.3454 0.1112 1300 0.2371
1.9632 0.1198 1400 0.2314
1.77 0.1284 1500 0.2271
1.6156 0.1369 1600 0.2222
1.2739 0.1455 1700 0.2173
2.0335 0.1540 1800 0.2136
1.4027 0.1626 1900 0.2120
1.4062 0.1711 2000 0.2094
1.878 0.1797 2100 0.2082
1.9998 0.1883 2200 0.2068
1.4869 0.1968 2300 0.2061
1.4694 0.2054 2400 0.2058
1.3543 0.2139 2500 0.2057

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Alphatao/dd206ec7-9cef-4517-abdc-c03d9ee91679

Adapter
(169)
this model