See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: codellama/CodeLlama-7b-Instruct-hf
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- fabd5184990f475f_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/fabd5184990f475f_train_data.json
type:
field_instruction: prompt
field_output: chosen
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/a5c2e3c9-406f-4f49-aac9-5c113c98fef3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 588
micro_batch_size: 4
mlflow_experiment_name: /tmp/fabd5184990f475f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: c5b9d6c9-db05-4a3d-a869-85403e982130
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c5b9d6c9-db05-4a3d-a869-85403e982130
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
a5c2e3c9-406f-4f49-aac9-5c113c98fef3
This model is a fine-tuned version of codellama/CodeLlama-7b-Instruct-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8301
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 588
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.985 | 0.0008 | 1 | 0.9833 |
1.0307 | 0.0759 | 100 | 0.8529 |
0.8224 | 0.1517 | 200 | 0.8421 |
0.9231 | 0.2276 | 300 | 0.8355 |
0.9039 | 0.3034 | 400 | 0.8318 |
0.7915 | 0.3793 | 500 | 0.8301 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for Alphatao/a5c2e3c9-406f-4f49-aac9-5c113c98fef3
Base model
codellama/CodeLlama-7b-Instruct-hf