Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: EleutherAI/gpt-neo-125m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - f1bfae7be46056e8_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/f1bfae7be46056e8_train_data.json
  type:
    field_input: intent
    field_instruction: instruction
    field_output: response_8b_instruct
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/a3a3ad81-b4a1-4f93-93ae-295283c65877
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 4140
micro_batch_size: 4
mlflow_experiment_name: /tmp/f1bfae7be46056e8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ff228523-b38e-4081-8a47-fba2a3a7734a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ff228523-b38e-4081-8a47-fba2a3a7734a
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

a3a3ad81-b4a1-4f93-93ae-295283c65877

This model is a fine-tuned version of EleutherAI/gpt-neo-125m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4956

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 4140

Training results

Training Loss Epoch Step Validation Loss
14.944 0.0004 1 1.8463
13.2896 0.0410 100 1.6569
12.6626 0.0819 200 1.6212
12.1594 0.1229 300 1.6025
13.1368 0.1638 400 1.5895
11.7641 0.2048 500 1.5792
12.2521 0.2458 600 1.5706
12.7007 0.2867 700 1.5628
12.4073 0.3277 800 1.5566
11.8441 0.3686 900 1.5502
12.0474 0.4096 1000 1.5450
12.2819 0.4506 1100 1.5404
12.1005 0.4915 1200 1.5361
12.0294 0.5325 1300 1.5318
10.9226 0.5734 1400 1.5287
12.699 0.6144 1500 1.5249
11.1465 0.6554 1600 1.5220
12.7089 0.6963 1700 1.5190
11.913 0.7373 1800 1.5169
12.6178 0.7782 1900 1.5142
12.4096 0.8192 2000 1.5120
12.1816 0.8602 2100 1.5102
11.997 0.9011 2200 1.5080
11.2863 0.9421 2300 1.5063
12.8136 0.9831 2400 1.5051
11.1348 1.0240 2500 1.5036
10.9168 1.0650 2600 1.5024
12.2777 1.1059 2700 1.5012
11.5514 1.1469 2800 1.5004
11.6384 1.1879 2900 1.4996
12.1427 1.2288 3000 1.4987
11.562 1.2698 3100 1.4981
12.3934 1.3107 3200 1.4976
11.4483 1.3517 3300 1.4971
12.2488 1.3927 3400 1.4965
12.2295 1.4336 3500 1.4963
12.5171 1.4746 3600 1.4961
11.0663 1.5155 3700 1.4959
12.0324 1.5565 3800 1.4957
11.9398 1.5975 3900 1.4957
12.7317 1.6384 4000 1.4957
12.2614 1.6794 4100 1.4956

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
6
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Alphatao/a3a3ad81-b4a1-4f93-93ae-295283c65877

Adapter
(169)
this model