See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: EleutherAI/gpt-neo-125m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f1bfae7be46056e8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f1bfae7be46056e8_train_data.json
type:
field_input: intent
field_instruction: instruction
field_output: response_8b_instruct
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/a3a3ad81-b4a1-4f93-93ae-295283c65877
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 4140
micro_batch_size: 4
mlflow_experiment_name: /tmp/f1bfae7be46056e8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ff228523-b38e-4081-8a47-fba2a3a7734a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ff228523-b38e-4081-8a47-fba2a3a7734a
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
a3a3ad81-b4a1-4f93-93ae-295283c65877
This model is a fine-tuned version of EleutherAI/gpt-neo-125m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4956
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 4140
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
14.944 | 0.0004 | 1 | 1.8463 |
13.2896 | 0.0410 | 100 | 1.6569 |
12.6626 | 0.0819 | 200 | 1.6212 |
12.1594 | 0.1229 | 300 | 1.6025 |
13.1368 | 0.1638 | 400 | 1.5895 |
11.7641 | 0.2048 | 500 | 1.5792 |
12.2521 | 0.2458 | 600 | 1.5706 |
12.7007 | 0.2867 | 700 | 1.5628 |
12.4073 | 0.3277 | 800 | 1.5566 |
11.8441 | 0.3686 | 900 | 1.5502 |
12.0474 | 0.4096 | 1000 | 1.5450 |
12.2819 | 0.4506 | 1100 | 1.5404 |
12.1005 | 0.4915 | 1200 | 1.5361 |
12.0294 | 0.5325 | 1300 | 1.5318 |
10.9226 | 0.5734 | 1400 | 1.5287 |
12.699 | 0.6144 | 1500 | 1.5249 |
11.1465 | 0.6554 | 1600 | 1.5220 |
12.7089 | 0.6963 | 1700 | 1.5190 |
11.913 | 0.7373 | 1800 | 1.5169 |
12.6178 | 0.7782 | 1900 | 1.5142 |
12.4096 | 0.8192 | 2000 | 1.5120 |
12.1816 | 0.8602 | 2100 | 1.5102 |
11.997 | 0.9011 | 2200 | 1.5080 |
11.2863 | 0.9421 | 2300 | 1.5063 |
12.8136 | 0.9831 | 2400 | 1.5051 |
11.1348 | 1.0240 | 2500 | 1.5036 |
10.9168 | 1.0650 | 2600 | 1.5024 |
12.2777 | 1.1059 | 2700 | 1.5012 |
11.5514 | 1.1469 | 2800 | 1.5004 |
11.6384 | 1.1879 | 2900 | 1.4996 |
12.1427 | 1.2288 | 3000 | 1.4987 |
11.562 | 1.2698 | 3100 | 1.4981 |
12.3934 | 1.3107 | 3200 | 1.4976 |
11.4483 | 1.3517 | 3300 | 1.4971 |
12.2488 | 1.3927 | 3400 | 1.4965 |
12.2295 | 1.4336 | 3500 | 1.4963 |
12.5171 | 1.4746 | 3600 | 1.4961 |
11.0663 | 1.5155 | 3700 | 1.4959 |
12.0324 | 1.5565 | 3800 | 1.4957 |
11.9398 | 1.5975 | 3900 | 1.4957 |
12.7317 | 1.6384 | 4000 | 1.4957 |
12.2614 | 1.6794 | 4100 | 1.4956 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for Alphatao/a3a3ad81-b4a1-4f93-93ae-295283c65877
Base model
EleutherAI/gpt-neo-125m