Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: EleutherAI/gpt-neo-125m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - f1bfae7be46056e8_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/f1bfae7be46056e8_train_data.json
  type:
    field_input: intent
    field_instruction: instruction
    field_output: response_8b_instruct
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/a2fadffe-74bd-40df-9b59-79a4857925a7
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 4140
micro_batch_size: 4
mlflow_experiment_name: /tmp/f1bfae7be46056e8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ff228523-b38e-4081-8a47-fba2a3a7734a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ff228523-b38e-4081-8a47-fba2a3a7734a
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

a2fadffe-74bd-40df-9b59-79a4857925a7

This model is a fine-tuned version of EleutherAI/gpt-neo-125m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4955

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 4140

Training results

Training Loss Epoch Step Validation Loss
14.944 0.0004 1 1.8463
13.3083 0.0410 100 1.6581
12.6572 0.0819 200 1.6218
12.1718 0.1229 300 1.6031
13.1425 0.1638 400 1.5900
11.7675 0.2048 500 1.5797
12.2515 0.2458 600 1.5709
12.7135 0.2867 700 1.5630
12.4054 0.3277 800 1.5568
11.8353 0.3686 900 1.5502
12.0527 0.4096 1000 1.5448
12.2754 0.4506 1100 1.5402
12.0864 0.4915 1200 1.5360
12.0309 0.5325 1300 1.5317
10.92 0.5734 1400 1.5285
12.7007 0.6144 1500 1.5247
11.1532 0.6554 1600 1.5218
12.6976 0.6963 1700 1.5187
11.9156 0.7373 1800 1.5166
12.6085 0.7782 1900 1.5139
12.4087 0.8192 2000 1.5118
12.1581 0.8602 2100 1.5099
11.9825 0.9011 2200 1.5079
11.2843 0.9421 2300 1.5060
12.8118 0.9831 2400 1.5049
11.1252 1.0240 2500 1.5034
10.9378 1.0650 2600 1.5022
12.2633 1.1059 2700 1.5009
11.5464 1.1469 2800 1.5001
11.6295 1.1879 2900 1.4994
12.1325 1.2288 3000 1.4985
11.571 1.2698 3100 1.4978
12.381 1.3107 3200 1.4973
11.4236 1.3517 3300 1.4968
12.2288 1.3927 3400 1.4964
12.2337 1.4336 3500 1.4961
12.5231 1.4746 3600 1.4958
11.0633 1.5155 3700 1.4957
12.0329 1.5565 3800 1.4956
11.9344 1.5975 3900 1.4956
12.7316 1.6384 4000 1.4955
12.2778 1.6794 4100 1.4955

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
6
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Alphatao/a2fadffe-74bd-40df-9b59-79a4857925a7

Adapter
(169)
this model