See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: EleutherAI/gpt-neo-125m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f1bfae7be46056e8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f1bfae7be46056e8_train_data.json
type:
field_input: intent
field_instruction: instruction
field_output: response_8b_instruct
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/a2fadffe-74bd-40df-9b59-79a4857925a7
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 4140
micro_batch_size: 4
mlflow_experiment_name: /tmp/f1bfae7be46056e8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ff228523-b38e-4081-8a47-fba2a3a7734a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ff228523-b38e-4081-8a47-fba2a3a7734a
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
a2fadffe-74bd-40df-9b59-79a4857925a7
This model is a fine-tuned version of EleutherAI/gpt-neo-125m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4955
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 4140
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
14.944 | 0.0004 | 1 | 1.8463 |
13.3083 | 0.0410 | 100 | 1.6581 |
12.6572 | 0.0819 | 200 | 1.6218 |
12.1718 | 0.1229 | 300 | 1.6031 |
13.1425 | 0.1638 | 400 | 1.5900 |
11.7675 | 0.2048 | 500 | 1.5797 |
12.2515 | 0.2458 | 600 | 1.5709 |
12.7135 | 0.2867 | 700 | 1.5630 |
12.4054 | 0.3277 | 800 | 1.5568 |
11.8353 | 0.3686 | 900 | 1.5502 |
12.0527 | 0.4096 | 1000 | 1.5448 |
12.2754 | 0.4506 | 1100 | 1.5402 |
12.0864 | 0.4915 | 1200 | 1.5360 |
12.0309 | 0.5325 | 1300 | 1.5317 |
10.92 | 0.5734 | 1400 | 1.5285 |
12.7007 | 0.6144 | 1500 | 1.5247 |
11.1532 | 0.6554 | 1600 | 1.5218 |
12.6976 | 0.6963 | 1700 | 1.5187 |
11.9156 | 0.7373 | 1800 | 1.5166 |
12.6085 | 0.7782 | 1900 | 1.5139 |
12.4087 | 0.8192 | 2000 | 1.5118 |
12.1581 | 0.8602 | 2100 | 1.5099 |
11.9825 | 0.9011 | 2200 | 1.5079 |
11.2843 | 0.9421 | 2300 | 1.5060 |
12.8118 | 0.9831 | 2400 | 1.5049 |
11.1252 | 1.0240 | 2500 | 1.5034 |
10.9378 | 1.0650 | 2600 | 1.5022 |
12.2633 | 1.1059 | 2700 | 1.5009 |
11.5464 | 1.1469 | 2800 | 1.5001 |
11.6295 | 1.1879 | 2900 | 1.4994 |
12.1325 | 1.2288 | 3000 | 1.4985 |
11.571 | 1.2698 | 3100 | 1.4978 |
12.381 | 1.3107 | 3200 | 1.4973 |
11.4236 | 1.3517 | 3300 | 1.4968 |
12.2288 | 1.3927 | 3400 | 1.4964 |
12.2337 | 1.4336 | 3500 | 1.4961 |
12.5231 | 1.4746 | 3600 | 1.4958 |
11.0633 | 1.5155 | 3700 | 1.4957 |
12.0329 | 1.5565 | 3800 | 1.4956 |
11.9344 | 1.5975 | 3900 | 1.4956 |
12.7316 | 1.6384 | 4000 | 1.4955 |
12.2778 | 1.6794 | 4100 | 1.4955 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for Alphatao/a2fadffe-74bd-40df-9b59-79a4857925a7
Base model
EleutherAI/gpt-neo-125m