See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/gemma-2b-it
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 52b51d4a8d8dae82_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/52b51d4a8d8dae82_train_data.json
type:
field_instruction: instruction
field_output: output
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 400
eval_table_size: null
flash_attention: false
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/9d65626e-53aa-48e7-9c43-1cd15808de5a
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 11867
micro_batch_size: 2
mlflow_experiment_name: /tmp/52b51d4a8d8dae82_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 400
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ff680a59-ee3c-407a-8506-d9507d1c8bd0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ff680a59-ee3c-407a-8506-d9507d1c8bd0
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
9d65626e-53aa-48e7-9c43-1cd15808de5a
This model is a fine-tuned version of unsloth/gemma-2b-it on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7440
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 11867
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6257 | 0.0001 | 1 | 1.3826 |
0.823 | 0.0341 | 400 | 0.8594 |
0.8278 | 0.0682 | 800 | 0.8445 |
0.9407 | 0.1023 | 1200 | 0.8366 |
0.8239 | 0.1364 | 1600 | 0.8304 |
1.0677 | 0.1705 | 2000 | 0.8265 |
0.8125 | 0.2046 | 2400 | 0.8186 |
0.9515 | 0.2387 | 2800 | 0.8148 |
0.7069 | 0.2727 | 3200 | 0.8099 |
0.7106 | 0.3068 | 3600 | 0.8049 |
0.9589 | 0.3409 | 4000 | 0.8002 |
0.9544 | 0.3750 | 4400 | 0.7965 |
0.833 | 0.4091 | 4800 | 0.7919 |
0.8829 | 0.4432 | 5200 | 0.7867 |
1.0338 | 0.4773 | 5600 | 0.7828 |
0.7217 | 0.5114 | 6000 | 0.7784 |
0.7006 | 0.5455 | 6400 | 0.7739 |
0.8399 | 0.5796 | 6800 | 0.7699 |
0.5234 | 0.6137 | 7200 | 0.7656 |
0.6645 | 0.6478 | 7600 | 0.7614 |
0.8158 | 0.6819 | 8000 | 0.7582 |
0.5981 | 0.7160 | 8400 | 0.7548 |
0.6689 | 0.7501 | 8800 | 0.7522 |
0.854 | 0.7841 | 9200 | 0.7498 |
0.5398 | 0.8182 | 9600 | 0.7478 |
0.7944 | 0.8523 | 10000 | 0.7464 |
1.061 | 0.8864 | 10400 | 0.7452 |
0.7511 | 0.9205 | 10800 | 0.7445 |
0.6627 | 0.9546 | 11200 | 0.7441 |
0.8566 | 0.9887 | 11600 | 0.7440 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/9d65626e-53aa-48e7-9c43-1cd15808de5a
Base model
unsloth/gemma-2b-it