Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/gemma-2b-it
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 52b51d4a8d8dae82_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/52b51d4a8d8dae82_train_data.json
  type:
    field_instruction: instruction
    field_output: output
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 400
eval_table_size: null
flash_attention: false
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/9d65626e-53aa-48e7-9c43-1cd15808de5a
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 11867
micro_batch_size: 2
mlflow_experiment_name: /tmp/52b51d4a8d8dae82_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 400
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: ff680a59-ee3c-407a-8506-d9507d1c8bd0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ff680a59-ee3c-407a-8506-d9507d1c8bd0
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

9d65626e-53aa-48e7-9c43-1cd15808de5a

This model is a fine-tuned version of unsloth/gemma-2b-it on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7440

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 11867

Training results

Training Loss Epoch Step Validation Loss
1.6257 0.0001 1 1.3826
0.823 0.0341 400 0.8594
0.8278 0.0682 800 0.8445
0.9407 0.1023 1200 0.8366
0.8239 0.1364 1600 0.8304
1.0677 0.1705 2000 0.8265
0.8125 0.2046 2400 0.8186
0.9515 0.2387 2800 0.8148
0.7069 0.2727 3200 0.8099
0.7106 0.3068 3600 0.8049
0.9589 0.3409 4000 0.8002
0.9544 0.3750 4400 0.7965
0.833 0.4091 4800 0.7919
0.8829 0.4432 5200 0.7867
1.0338 0.4773 5600 0.7828
0.7217 0.5114 6000 0.7784
0.7006 0.5455 6400 0.7739
0.8399 0.5796 6800 0.7699
0.5234 0.6137 7200 0.7656
0.6645 0.6478 7600 0.7614
0.8158 0.6819 8000 0.7582
0.5981 0.7160 8400 0.7548
0.6689 0.7501 8800 0.7522
0.854 0.7841 9200 0.7498
0.5398 0.8182 9600 0.7478
0.7944 0.8523 10000 0.7464
1.061 0.8864 10400 0.7452
0.7511 0.9205 10800 0.7445
0.6627 0.9546 11200 0.7441
0.8566 0.9887 11600 0.7440

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Alphatao/9d65626e-53aa-48e7-9c43-1cd15808de5a

Adapter
(213)
this model