Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - bdfa47154f25279a_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/bdfa47154f25279a_train_data.json
  type:
    field_instruction: instruction
    field_output: response_8b_instruct
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/81c5b88d-2e4d-4e98-999b-c4ad193eac00
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2520
micro_batch_size: 4
mlflow_experiment_name: /tmp/bdfa47154f25279a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 610b76a0-719b-4424-a47d-093cf3d53330
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 610b76a0-719b-4424-a47d-093cf3d53330
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

81c5b88d-2e4d-4e98-999b-c4ad193eac00

This model is a fine-tuned version of unsloth/Qwen2.5-Coder-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6281

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 2520

Training results

Training Loss Epoch Step Validation Loss
0.9532 0.0004 1 0.9137
0.7282 0.0414 100 0.7254
0.7217 0.0827 200 0.7107
0.7187 0.1241 300 0.7015
0.6576 0.1655 400 0.6941
0.6551 0.2068 500 0.6868
0.7109 0.2482 600 0.6823
0.7676 0.2895 700 0.6768
0.7061 0.3309 800 0.6723
0.7188 0.3723 900 0.6674
0.6433 0.4136 1000 0.6634
0.6793 0.4550 1100 0.6586
0.7055 0.4964 1200 0.6546
0.6812 0.5377 1300 0.6505
0.6886 0.5791 1400 0.6473
0.6083 0.6204 1500 0.6434
0.6099 0.6618 1600 0.6399
0.7233 0.7032 1700 0.6373
0.6276 0.7445 1800 0.6348
0.6827 0.7859 1900 0.6327
0.6579 0.8273 2000 0.6310
0.6595 0.8686 2100 0.6297
0.6665 0.9100 2200 0.6289
0.5852 0.9513 2300 0.6283
0.5689 0.9927 2400 0.6281
0.4826 1.0342 2500 0.6281

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Alphatao/81c5b88d-2e4d-4e98-999b-c4ad193eac00