See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-Coder-1.5B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- bdfa47154f25279a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/bdfa47154f25279a_train_data.json
type:
field_instruction: instruction
field_output: response_8b_instruct
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/81c5b88d-2e4d-4e98-999b-c4ad193eac00
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2520
micro_batch_size: 4
mlflow_experiment_name: /tmp/bdfa47154f25279a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 610b76a0-719b-4424-a47d-093cf3d53330
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 610b76a0-719b-4424-a47d-093cf3d53330
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
81c5b88d-2e4d-4e98-999b-c4ad193eac00
This model is a fine-tuned version of unsloth/Qwen2.5-Coder-1.5B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6281
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2520
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9532 | 0.0004 | 1 | 0.9137 |
0.7282 | 0.0414 | 100 | 0.7254 |
0.7217 | 0.0827 | 200 | 0.7107 |
0.7187 | 0.1241 | 300 | 0.7015 |
0.6576 | 0.1655 | 400 | 0.6941 |
0.6551 | 0.2068 | 500 | 0.6868 |
0.7109 | 0.2482 | 600 | 0.6823 |
0.7676 | 0.2895 | 700 | 0.6768 |
0.7061 | 0.3309 | 800 | 0.6723 |
0.7188 | 0.3723 | 900 | 0.6674 |
0.6433 | 0.4136 | 1000 | 0.6634 |
0.6793 | 0.4550 | 1100 | 0.6586 |
0.7055 | 0.4964 | 1200 | 0.6546 |
0.6812 | 0.5377 | 1300 | 0.6505 |
0.6886 | 0.5791 | 1400 | 0.6473 |
0.6083 | 0.6204 | 1500 | 0.6434 |
0.6099 | 0.6618 | 1600 | 0.6399 |
0.7233 | 0.7032 | 1700 | 0.6373 |
0.6276 | 0.7445 | 1800 | 0.6348 |
0.6827 | 0.7859 | 1900 | 0.6327 |
0.6579 | 0.8273 | 2000 | 0.6310 |
0.6595 | 0.8686 | 2100 | 0.6297 |
0.6665 | 0.9100 | 2200 | 0.6289 |
0.5852 | 0.9513 | 2300 | 0.6283 |
0.5689 | 0.9927 | 2400 | 0.6281 |
0.4826 | 1.0342 | 2500 | 0.6281 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/81c5b88d-2e4d-4e98-999b-c4ad193eac00
Base model
Qwen/Qwen2.5-1.5B
Finetuned
Qwen/Qwen2.5-Coder-1.5B
Finetuned
Qwen/Qwen2.5-Coder-1.5B-Instruct
Finetuned
unsloth/Qwen2.5-Coder-1.5B-Instruct