See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: microsoft/Phi-3-mini-128k-instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- f519e55b9fa5e216_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f519e55b9fa5e216_train_data.json
type:
field_input: intent
field_instruction: instruction
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/73bb6bbb-83b4-4a28-98fd-5753f0f5a11d
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2040
micro_batch_size: 4
mlflow_experiment_name: /tmp/f519e55b9fa5e216_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.020094686161191533
wandb_entity: null
wandb_mode: online
wandb_name: d6152391-97e5-4079-b599-8fa049291a62
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d6152391-97e5-4079-b599-8fa049291a62
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
73bb6bbb-83b4-4a28-98fd-5753f0f5a11d
This model is a fine-tuned version of microsoft/Phi-3-mini-128k-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2567
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2040
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.462 | 0.0001 | 1 | 0.5078 |
2.1475 | 0.0131 | 100 | 0.2966 |
2.1053 | 0.0262 | 200 | 0.2892 |
2.2196 | 0.0394 | 300 | 0.2850 |
2.2406 | 0.0525 | 400 | 0.2813 |
2.0445 | 0.0656 | 500 | 0.2786 |
2.2754 | 0.0787 | 600 | 0.2756 |
2.5719 | 0.0919 | 700 | 0.2734 |
2.4255 | 0.1050 | 800 | 0.2715 |
2.6879 | 0.1181 | 900 | 0.2692 |
1.9891 | 0.1312 | 1000 | 0.2669 |
2.3204 | 0.1444 | 1100 | 0.2650 |
2.1741 | 0.1575 | 1200 | 0.2632 |
2.5809 | 0.1706 | 1300 | 0.2618 |
2.0244 | 0.1837 | 1400 | 0.2603 |
2.5022 | 0.1969 | 1500 | 0.2592 |
2.3195 | 0.2100 | 1600 | 0.2581 |
2.1718 | 0.2231 | 1700 | 0.2575 |
2.2811 | 0.2362 | 1800 | 0.2570 |
1.6784 | 0.2494 | 1900 | 0.2568 |
2.1885 | 0.2625 | 2000 | 0.2567 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/73bb6bbb-83b4-4a28-98fd-5753f0f5a11d
Base model
microsoft/Phi-3-mini-128k-instruct