See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: bigscience/bloom-560m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- d15508f8089bb58e_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/d15508f8089bb58e_train_data.json
type:
field_input: alt_text
field_instruction: question
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/54e6ea23-b5e1-4619-b29d-902656097671
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- query_key_value
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 7680
micro_batch_size: 4
mlflow_experiment_name: /tmp/d15508f8089bb58e_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: e655a30b-fca7-4301-b464-31f5d361a493
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: e655a30b-fca7-4301-b464-31f5d361a493
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
54e6ea23-b5e1-4619-b29d-902656097671
This model is a fine-tuned version of bigscience/bloom-560m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.3220
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 4676
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
22.4204 | 0.0004 | 1 | 2.7565 |
13.7242 | 0.0428 | 100 | 1.6310 |
12.6846 | 0.0855 | 200 | 1.5751 |
11.8994 | 0.1283 | 300 | 1.5361 |
11.7018 | 0.1711 | 400 | 1.5088 |
13.5725 | 0.2139 | 500 | 1.4896 |
12.0607 | 0.2566 | 600 | 1.4739 |
10.9681 | 0.2994 | 700 | 1.4602 |
11.1942 | 0.3422 | 800 | 1.4502 |
10.2645 | 0.3849 | 900 | 1.4407 |
12.0345 | 0.4277 | 1000 | 1.4308 |
11.543 | 0.4705 | 1100 | 1.4215 |
10.9802 | 0.5133 | 1200 | 1.4173 |
10.6541 | 0.5560 | 1300 | 1.4101 |
10.0251 | 0.5988 | 1400 | 1.4006 |
10.9978 | 0.6416 | 1500 | 1.3946 |
11.9791 | 0.6843 | 1600 | 1.3887 |
10.4467 | 0.7271 | 1700 | 1.3834 |
10.8237 | 0.7699 | 1800 | 1.3796 |
10.5302 | 0.8127 | 1900 | 1.3746 |
10.5822 | 0.8554 | 2000 | 1.3683 |
10.7599 | 0.8982 | 2100 | 1.3670 |
9.556 | 0.9410 | 2200 | 1.3615 |
10.5026 | 0.9837 | 2300 | 1.3549 |
9.6549 | 1.0265 | 2400 | 1.3543 |
10.5016 | 1.0693 | 2500 | 1.3523 |
10.5743 | 1.1121 | 2600 | 1.3481 |
9.8328 | 1.1548 | 2700 | 1.3470 |
11.0661 | 1.1976 | 2800 | 1.3439 |
11.0951 | 1.2404 | 2900 | 1.3412 |
10.086 | 1.2831 | 3000 | 1.3390 |
9.8004 | 1.3259 | 3100 | 1.3364 |
9.525 | 1.3687 | 3200 | 1.3342 |
10.3603 | 1.4115 | 3300 | 1.3327 |
10.1241 | 1.4542 | 3400 | 1.3308 |
9.146 | 1.4970 | 3500 | 1.3288 |
10.2162 | 1.5398 | 3600 | 1.3271 |
10.3733 | 1.5825 | 3700 | 1.3260 |
10.2542 | 1.6253 | 3800 | 1.3246 |
10.2883 | 1.6681 | 3900 | 1.3239 |
10.0702 | 1.7109 | 4000 | 1.3234 |
9.5546 | 1.7536 | 4100 | 1.3233 |
9.1898 | 1.7964 | 4200 | 1.3218 |
9.8766 | 1.8392 | 4300 | 1.3222 |
10.6581 | 1.8820 | 4400 | 1.3218 |
10.9446 | 1.9247 | 4500 | 1.3220 |
11.5194 | 1.9675 | 4600 | 1.3220 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/54e6ea23-b5e1-4619-b29d-902656097671
Base model
bigscience/bloom-560m