Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: The-matt/llama2_ko-7b_distinctive-snowflake-182_1060
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d99a766784bf9aac_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d99a766784bf9aac_train_data.json
  type:
    field_input: observation_1
    field_instruction: hypothesis_1
    field_output: hypothesis_2
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
device_map:
  ? ''
  : 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/41e7c5af-a1f6-4819-9151-e78ca44758c9
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1492
micro_batch_size: 4
mlflow_experiment_name: /tmp/d99a766784bf9aac_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.029345133989881797
wandb_entity: null
wandb_mode: online
wandb_name: f933b472-8b31-4910-8238-b266148752cb
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f933b472-8b31-4910-8238-b266148752cb
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

41e7c5af-a1f6-4819-9151-e78ca44758c9

This model is a fine-tuned version of The-matt/llama2_ko-7b_distinctive-snowflake-182_1060 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9283

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 1492

Training results

Training Loss Epoch Step Validation Loss
1.991 0.0002 1 2.0891
0.7791 0.0193 100 1.0327
0.9534 0.0387 200 1.0176
0.8024 0.0580 300 1.0099
1.0912 0.0774 400 1.0025
0.9103 0.0967 500 0.9914
1.096 0.1161 600 0.9805
0.9001 0.1354 700 0.9721
0.9069 0.1548 800 0.9605
0.9026 0.1741 900 0.9518
0.9298 0.1935 1000 0.9434
0.8921 0.2128 1100 0.9384
0.6853 0.2322 1200 0.9326
0.8713 0.2515 1300 0.9295
0.8621 0.2709 1400 0.9283

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Alphatao/41e7c5af-a1f6-4819-9151-e78ca44758c9