See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: bigscience/bloom-560m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 90fa039c0864e3ca_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/90fa039c0864e3ca_train_data.json
type:
field_input: context
field_instruction: instruction
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/2c03de99-9002-4ac9-8c88-35c7725fb9d3
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- query_key_value
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 8832
micro_batch_size: 4
mlflow_experiment_name: /tmp/90fa039c0864e3ca_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.01833395668786072
wandb_entity: null
wandb_mode: online
wandb_name: d7df8b7c-3cdd-464a-8a34-49efeb3f7525
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d7df8b7c-3cdd-464a-8a34-49efeb3f7525
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
2c03de99-9002-4ac9-8c88-35c7725fb9d3
This model is a fine-tuned version of bigscience/bloom-560m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.0593
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 8832
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
20.3231 | 0.0001 | 1 | 2.4185 |
17.2285 | 0.0120 | 100 | 2.0986 |
16.5696 | 0.0239 | 200 | 2.0902 |
16.1132 | 0.0359 | 300 | 2.0848 |
17.11 | 0.0478 | 400 | 2.0771 |
18.0987 | 0.0598 | 500 | 2.0744 |
16.3503 | 0.0717 | 600 | 2.0742 |
16.5062 | 0.0837 | 700 | 2.0718 |
15.716 | 0.0956 | 800 | 2.0683 |
15.7055 | 0.1076 | 900 | 2.0659 |
14.5481 | 0.1195 | 1000 | 2.0690 |
17.5521 | 0.1315 | 1100 | 2.0632 |
15.8487 | 0.1434 | 1200 | 2.0599 |
16.4771 | 0.1554 | 1300 | 2.0610 |
17.0074 | 0.1673 | 1400 | 2.0564 |
16.241 | 0.1793 | 1500 | 2.0572 |
15.6472 | 0.1912 | 1600 | 2.0593 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 51
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/2c03de99-9002-4ac9-8c88-35c7725fb9d3
Base model
bigscience/bloom-560m