See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: microsoft/Phi-3-mini-128k-instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 5e2d8d3116470735_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/5e2d8d3116470735_train_data.json
type:
field_input: long_answer
field_instruction: question
field_output: answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/011ab1ce-4aba-4932-bc6d-7f6c9b11a3f5
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1158
micro_batch_size: 4
mlflow_experiment_name: /tmp/5e2d8d3116470735_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 76d7febe-2e66-4d5d-bd02-a4022cad756a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 76d7febe-2e66-4d5d-bd02-a4022cad756a
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
011ab1ce-4aba-4932-bc6d-7f6c9b11a3f5
This model is a fine-tuned version of microsoft/Phi-3-mini-128k-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3590
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1158
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
12.544 | 0.0006 | 1 | 2.0138 |
2.8998 | 0.0628 | 100 | 0.3910 |
3.8169 | 0.1256 | 200 | 0.3819 |
2.7229 | 0.1884 | 300 | 0.3773 |
3.0384 | 0.2513 | 400 | 0.3706 |
3.1294 | 0.3141 | 500 | 0.3686 |
2.2776 | 0.3769 | 600 | 0.3664 |
2.6015 | 0.4397 | 700 | 0.3641 |
3.3572 | 0.5025 | 800 | 0.3625 |
2.6338 | 0.5653 | 900 | 0.3610 |
2.903 | 0.6281 | 1000 | 0.3598 |
3.295 | 0.6910 | 1100 | 0.3590 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Alphatao/011ab1ce-4aba-4932-bc6d-7f6c9b11a3f5
Base model
microsoft/Phi-3-mini-128k-instruct