English | ä¸æ–‡
Code implementation of Qwen2 based embeddings
This model code is for Qwen2 based embedding models.
We enable the bidirectional attention by default.
Usage
- Download the
configuration.py
andmodeling.py
to your savedgte-Qwen2
model directory. - Replace the
modeling_qwen.
withmodeling.
inauto_map
field ofconfig.json
.
Recommendation: Enable Unpadding and Acceleration with xformers
This code supports the acceleration of attention computations using xformers
,
which can automatically choose the optimal implementation based on the type of device, such as flash_attn
.
Therefore, we can also achieve significant acceleration on old devices like the V100.
Firstly, install xformers
(with pytorch
pre-installed):
if pytorch is installed using conda:
conda install xformers -c xformers
elif pytorch is installed using pip:
# cuda 11.8 version
pip3 install -U xformers --index-url https://download.pytorch.org/whl/cu118
# cuda 12.1 version
pip3 install -U xformers --index-url https://download.pytorch.org/whl/cu121
For more information, refer to Installing xformers.
Then, when loading the model, set unpad_inputs
and use_memory_efficient_attention
to true
,
and set torch_dtype
to torch.float16
(or torch.bfloat16
) to achieve the acceleration.
import torch
from transformers import AutoModel, AutoTokenizer
path = 'Alibaba-NLP/gte-Qwen2-1.5B-instruct'
device = torch.device('cuda')
tokenzier = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
model = AutoModel.from_pretrained(
path,
trust_remote_code=True,
unpad_inputs=True,
use_memory_efficient_attention=True,
torch_dtype=torch.float16
).to(device)
inputs = tokenzier(['test input'], truncation=True, max_length=8192, padding=True, return_tensors='pt')
with torch.inference_mode():
outputs = model(**inputs.to(device))
Alternatively, you can directly modify the unpad_inputs
and use_memory_efficient_attention
settings to true
in the model's config.json
,
eliminating the need to set them in the code.
Citation
@misc{zhang2024mgte,
title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
author={Xin Zhang and Yanzhao Zhang and Dingkun Long and Wen Xie and Ziqi Dai and Jialong Tang and Huan Lin and Baosong Yang and Pengjun Xie and Fei Huang and Meishan Zhang and Wenjie Li and Min Zhang},
year={2024},
eprint={2407.19669},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2407.19669},
}