See axolotl config
axolotl version: 0.10.0.dev0
base_model: /mnt/shared/tp1-an1/alex/Magistral/orignal_model
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
datasets:
- path: AlexHung29629/merged_aime_yamol_dataset
split: train
type:
system_prompt: ""
field_system: system
field_instruction: input
field_output: output
format: "{instruction}"
no_input_format: "{instruction}"
dataset_prepared_path: ./sft_dataprep/
val_set_size: 0
output_dir: ./placeholder_sft_4ep/
shuffle_merged_datasets: false
sequence_len: 32768
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: TP1_2025_05
wandb_entity:
wandb_watch:
wandb_name: Mistral-24B-SFT-250624
use_tensorboard: true
save_only_model: true
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 5e-6
max_grad_norm: 1.0
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-8
bf16: true
tf32: false
logging_steps: 1
flash_attention: true
xformers_attention: false
sdp_attention: false
warmup_ratio: 0.05
saves_per_epoch: 1
weight_decay: 0
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: true
fsdp_cpu_ram_efficient_loading: true
fsdp_activation_checkpointing: true
fsdp_transformer_layer_cls_to_wrap: MistralDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
seed: 42
auto_resume_from_checkpoints: true
placeholder_sft_4ep/
This model was trained from scratch on the AlexHung29629/merged_aime_yamol_dataset dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 16
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.95) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 4
- num_epochs: 4.0
Training results
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support