See axolotl config
axolotl version: 0.12.0.dev0
base_model: out_khanacademy
remove_unused_columns: true
auto_resume_from_checkpoints: true
plugins:
- axolotl.integrations.liger.LigerPlugin
#- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true
unfrozen_parameters:
- ^\S+layers\S+$
- ^\S+norm\S+$
datasets:
- path: AlexHung29629/nllb_processed
split: train[:1_000_000]
type: chat_template
chat_template: jinja
chat_template_jinja: "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'system') %}{{message['content'] + '\n'}}{% elif (message['role'] == 'user') %}{{'Source: ' + '\n' + message['content'] + '\n' + '\nTarget:\n'}}{% elif message['role'] == 'assistant' %}{{message['content'] + '</s>' + '\n'}}{% endif %}{% endfor %}"
roles_to_train: ['user', 'assistant']
#test_datasets:
# - path: HuggingFaceTB/cosmopedia
# name: khanacademy
# split: train[-100:]
# type:
# system_prompt: ""
# field_system:
# field_instruction: prompt
# field_output: text
# format: "User: {instruction}\n\nAssistant: "
# no_input_format: "User: {instruction}\n\nAssistant: "
sample_packing_bin_size: 500
dataset_prepared_path: data_prep_nllb
output_dir: ./out_nllb
dataloader_num_workers: 1
dataloader_pin_memory: true
shuffle_merged_datasets: false
sequence_len: 8192
eval_sequence_len: 2048
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true
use_tensorboard: true
use_wandb: true
# Set the name of your wandb run
wandb_name: nllb
# Your wandb project name
wandb_project: Draft_Tiny
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
#eval_steps: 500
save_steps: 1000
save_total_limit: 1
save_only_model: false
optimizer: adamw_8bit
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-6
lr_scheduler: constant_with_warmup
learning_rate: 0.0003
max_grad_norm: 1.0
bf16: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
torch_compile: true
torch_compile_backend: inductor
torch_compile_mode: default
#flash_attention: true
#sdp_attention: true
#xformers_attention: true
flex_attention: true
flex_attn_compile_kwargs:
dynamic: false
mode: max-autotune-no-cudagraphs
warmup_steps: 1
logging_steps: 1
weight_decay: 0.001
special_tokens:
bos_token: <s>
eos_token: </s>
pad_token: <pad>
unk_token: <unk>
out_nllb
This model was trained from scratch on the AlexHung29629/nllb_processed dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.95) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 2
- training_steps: 13786
Training results
Framework versions
- Transformers 4.54.1
- Pytorch 2.7.1+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 10