GLASNOST V.1: 80s USSR TV/Film
Style/Context Low Rank Adaptor (LoRA)
For Wan2.1 14B T2V & I2V Base Models
Stylers of Kinema Historical LoRAs
|||||||| By SilverAgePoets.com ||||||||
- Prompt
- [GLASNOST] style...
- Prompt
- [GLASNOST] style...
- Prompt
- [GLASNOST] style...
- Prompt
- [GLASNOST] style...
- Prompt
- [GLASNOST] style...
- Prompt
- [GLASNOST] style...
About this LoRA
This is a Rank 32/Alpha 64 LoRA for the Wan2.1 14b video generation model.
It was trained on hundreds of clips and frames from a variety of 1980s Perestroika-era Soviet films, tv shows, concerts, & music videos.
It can be used with diffusers or ComfyUI or DrawThings, etc...
This LoRA works well with both CausVid & Self-Forcing distillation quick inference adapters.
It also works fairly well in combos w/ other LoRAs.
Get creative with these!
Trigger words
You should use GLASNOST style vintage crisp analog footage from a 1980s soviet television movie, cinematic, video filmed in the USSR during the perestroika era, raw real life footage, vhs
, etc, to ressurect one of these more recent gestalts of futures no-longer-past!
Using with Diffusers
pip install git+https://github.com/huggingface/diffusers.git
import torch
from diffusers.utils import export_to_video
from diffusers import AutoencoderKLWan, WanPipeline
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
model_id = "wavespeed/Wan2.1-T2V-14B-Diffusers-fp16"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
flow_shift = 3.0 # 5.0 for 720P, 3.0 for 480P
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
pipe.to("cuda")
pipe.load_lora_weights("AlekseyCalvin/Glasnost_v1_wan_14b_USSR80sTVstyle")
pipe.enable_model_cpu_offload() #for low-vram environments
prompt = "GLASNOST style"
negative_prompt = "overexposed, static, blurred, subtitles, images, static, worst, low, JPEG compression residue, incomplete, extra fingers, poorly drawn, poorly drawn, deformed, disfigured, misshapen, fused, still picture, backwards"
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=480,
width=832,
num_frames=81,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "output.mp4", fps=16)
Training details
- Steps: 5000
- Learning rate: 0.0002
- LoRA rank: 32 dim, 64 alpha
Contribute your own examples
You can use the community tab to add videos that show off what you’ve made with this LoRA.
Model tree for AlekseyCalvin/Glasnost_v1_wan_14b_USSR80sTVstyle
Base model
Wan-AI/Wan2.1-T2V-14B-Diffusers