Ahmed107's picture
End of training
2a091d3 verified
metadata
library_name: transformers
license: apache-2.0
base_model: arbml/whisper-tiny-ar
tags:
  - generated_from_trainer
datasets:
  - speech_commands
metrics:
  - accuracy
model-index:
  - name: whisper-tiny-ar-ft-kws-speech-commands
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: Speech Commands
          type: speech_commands
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5204081632653061

whisper-tiny-ar-ft-kws-speech-commands

This model is a fine-tuned version of arbml/whisper-tiny-ar on the Speech Commands dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8423
  • Accuracy: 0.5204

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6826 1.0 1325 0.7084 0.4966
0.7052 2.0 2650 0.6965 0.5
0.7409 3.0 3975 0.6876 0.5510
0.7077 4.0 5300 0.7214 0.5170
0.7988 5.0 6625 0.7523 0.4898
0.5818 6.0 7950 0.8118 0.5510
0.7722 7.0 9275 0.9102 0.5306
1.4165 8.0 10600 1.6832 0.5
0.7113 9.0 11925 1.6268 0.5340
0.2578 10.0 13250 1.8423 0.5204

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0