results / README.md
AfterRain007's picture
cryptobertRefined
b51eb01
metadata
base_model: ElKulako/cryptobert
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of ElKulako/cryptobert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8983
  • Accuracy: 0.6433
  • Precision: 0.6614
  • Recall: 0.6433
  • F1: 0.6461

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 69420
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.9586 0.19 100 0.8746 0.6033 0.5990 0.6033 0.5944
0.7362 0.38 200 0.8187 0.63 0.6322 0.63 0.6232
0.577 0.57 300 0.8065 0.6767 0.6821 0.6767 0.6761
0.4632 0.76 400 0.8437 0.63 0.6411 0.63 0.6321
0.3243 0.95 500 0.8983 0.6433 0.6614 0.6433 0.6461
0.2257 1.14 600 1.3704 0.6033 0.6863 0.6033 0.6046
0.1333 1.33 700 1.2951 0.6033 0.6201 0.6033 0.6052
0.0574 1.52 800 1.5119 0.6333 0.6331 0.6333 0.6309

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Tokenizers 0.15.0