File size: 11,010 Bytes
eb5263e 44f9d1b eb5263e c6186bf eb5263e 99156b4 d5136e1 eb5263e 9bb9f71 eb5263e 99156b4 eb5263e 99156b4 eb5263e 99156b4 eb5263e 44f9d1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
---
license: apache-2.0
datasets:
- AbstractPhil/human-templated-captions-1b
base_model:
- google-t5/t5-small
- openai/clip-vit-large-patch14
pipeline_tag: any-to-any
---
This is a shunt that takes in the t5-small and the vit-h-14 simultaneously.
The t5-small is used as a conditioning factor for normalization and guidance.
There are many possible toggles and many variations for this shunt to be used.
The only one I hooked up is the basic tool meant for simple text encoder guidance, then I shunted it into clip_embeds for a test - only to see it fall apart.
The results that worked with diffusers without a headache ended up being prompt_encode overriding with a monkey patch.
Drag and drop into colab and generate some sdxl images with it. Two nodes; one above the generator
Fiddle with the taps and mess with the settings to add additional or reduce guidance from the T5-small variations with your clip_l.
```
import safetensors.torch as st
import torch
from diffusers import StableDiffusionXLPipeline
from transformers import T5TokenizerFast, T5EncoderModel
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# β Two-Stream Shunt Adapter
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
class TwoStreamShuntAdapter(nn.Module):
"""
Cross-attentive adapter that aligns T5 and CLIP token streams.
Returns:
anchor : (B, Lc, clip_dim)
delta : (B, Lc, clip_dim)
log_sigma : (B, Lc, clip_dim) β log Ο, always finite
attn_t2c : (B, heads, Lt, Lc)
attn_c2t : (B, heads, Lc, Lt)
tau : (heads, 1, 1) β per-head threshold param
g_pred : (B, 1) β guidance-scale prediction
gate : (B, Lc, 1) β per-token gate β (0,1)
"""
def __init__(
self,
t5_dim: int = 512,
clip_dim: int = 768,
bottleneck: int = 256,
heads: int = 8,
tau_init: float = 0.1,
max_guidance: float = 10.0,
):
super().__init__()
print("TwoStreamShuntAdapter init")
self.heads = heads
self.bneck = bottleneck
self.max_guidance = max_guidance
# projections
self.proj_t5 = nn.Linear(t5_dim, bottleneck)
self.proj_clip = nn.Linear(clip_dim, bottleneck)
# cross-attention
self.cross_t2c = nn.MultiheadAttention(
bottleneck, heads, batch_first=True, dropout=0.1
)
self.cross_c2t = nn.MultiheadAttention(
bottleneck, heads, batch_first=True, dropout=0.1
)
# head-wise Ο
self.tau = nn.Parameter(torch.full((heads, 1, 1), tau_init))
# convolutional pocket residual (depth-wise)
self.res1 = nn.Conv1d(
bottleneck, bottleneck, 3, padding=1, groups=bottleneck
)
self.res2 = nn.Conv1d(
bottleneck, bottleneck, 3, padding=1, groups=bottleneck
)
self.norm_res = nn.LayerNorm(bottleneck)
# fusion + projections
self.fuse = nn.Linear(2 * bottleneck, bottleneck)
self.anchor_proj = nn.Sequential(
nn.Linear(bottleneck, bottleneck), nn.GELU(),
nn.Linear(bottleneck, clip_dim)
)
self.delta_proj = nn.Sequential(
nn.Linear(bottleneck, bottleneck), nn.GELU(),
nn.Linear(bottleneck, clip_dim)
)
self.logsig_proj = nn.Sequential(
nn.Linear(bottleneck, bottleneck), nn.GELU(),
nn.Linear(bottleneck, clip_dim)
)
self.gate_proj = nn.Sequential(
nn.Linear(bottleneck, bottleneck), nn.GELU(),
nn.Linear(bottleneck, 1), nn.Sigmoid()
)
self.guidance_proj = nn.Sequential(
nn.LayerNorm(bottleneck), nn.Linear(bottleneck, 1), nn.Sigmoid()
)
def load_state_dict(self, args, **kwargs):
# remove _orig_mod from state dict before applying.
state_dict = {k.replace("_orig_mod.", ""): v for k, v in args.items()}
super().load_state_dict(state_dict, **kwargs)
def forward(self, t5_seq: torch.Tensor, clip_seq: torch.Tensor):
print("π£ SHUNT FORWARD CALLED")
B, Lt, _ = t5_seq.size()
_, Lc, _ = clip_seq.size()
# 1) project into bottleneck
t5_b = self.proj_t5(t5_seq) # (B, Lt, b)
clip_b = self.proj_clip(clip_seq) # (B, Lc, b)
# 2) cross-attention
t2c, attn_t2c = self.cross_t2c(
t5_b, clip_b, clip_b, need_weights=True, average_attn_weights=False
)
c2t, attn_c2t = self.cross_c2t(
clip_b, t5_b, t5_b, need_weights=True, average_attn_weights=False
)
# 3) convolutional pocket on T5βCLIP
x = t2c.transpose(1, 2) # (B, b, Lt)
x = F.gelu(self.res1(x))
x = F.gelu(self.res2(x)).transpose(1, 2) # (B, Lt, b)
pocket = self.norm_res(t2c + x) # (B, Lt, b)
# 4) fuse pocket avg with C2T
pocket_mean = pocket.mean(1, keepdim=True).expand(-1, Lc, -1)
h = F.gelu(self.fuse(torch.cat([pocket_mean, c2t], -1))) # (B, Lc, b)
# 5) outputs
anchor = self.anchor_proj(h) # (B,Lc,768)
delta_mean = self.delta_proj(h) # (B,Lc,768)
log_sigma = self.logsig_proj(h) # (B,Lc,768)
gate = self.gate_proj(h) # (B,Lc,1)
delta = delta_mean * gate # (B,Lc,768)
g_tok = self.guidance_proj(h).squeeze(-1) # (B,Lc)
g_pred = g_tok.mean(1, keepdim=True) * self.max_guidance
#print(anchor, delta, log_sigma, attn_t2c, attn_c2t, self.tau, g_pred, gate)
return anchor, delta, log_sigma, attn_t2c, attn_c2t, self.tau, g_pred, gate
# --- 1. load pipeline -------------------------------------------------
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16).to("cuda")
# --- 2. load tiny-T5 & shunt (fp32) -----------------------------------
t5_tok = T5TokenizerFast.from_pretrained("t5-small")
t5_mod = T5EncoderModel.from_pretrained("t5-small").eval().to("cuda")
shunt = TwoStreamShuntAdapter().float().eval().to("cuda")
shunt.load_state_dict( st.load_file("/content/drive/MyDrive/t5-clip-l-shunts/vitl14_t5small_shunt_vanilla_final.safetensors") )
# --- 3. wrap encode_prompt once ---------------------------------------
orig_encode = pipe.encode_prompt
config = {
"strength": 1.0,
"gate_gamma": 1.0,
"tau_scale": 1.0,
"guidance_gain": 1.0,
"guidance_bias": 0.0
}
gen = torch.Generator(device="cuda").manual_seed(420)
```
Place this on another node so you don't reload over and over.
```
strength = 0
# the working version that can't be omitted,
def stable_encode_prompt_shunted(self, *args, **kw):
pe, ne, pool, npool = orig_encode(*args, **kw) # regular call
# π split: first 768 dims are CLIP-L, rest 1280 are CLIP-G
clipL, clipG = pe[..., :768], pe[..., 768:]
# build T5 batch (handles CFG dup automatically because
# encode_prompt already concatenated negative & positive if needed)
bsz = clipL.shape[0]
texts = ["tmp"] * bsz # dummy, we only care about hidden states
t5_ids = t5_tok(texts, return_tensors="pt").input_ids.to("cuda")
t5_seq = t5_mod(t5_ids).last_hidden_state # (B,L,512)
# run adapter in fp32
delta = shunt(t5_seq.float(), clipL.float())[1] # second output is Ξ
delta = delta * strength # << your strength knob
clipL_shift = (clipL.float() + delta).to(clipL.dtype)
pe_shifted = torch.cat([clipL_shift, clipG], dim=-1)
return pe_shifted, ne, pool, npool
#-----------------------------------------------------------------------------------------
def encode_prompt_shunted(self, *a, **k):
# 1) run the normal encoder with βstyleβ & βcontextβ already split
pe, ne, pool, npool = orig_encode(*a, **k) # (B,77,2048)
# 2) split CLIP-L / CLIP-G
clipL, clipG = pe[..., :768], pe[..., 768:]
# 3) build T5 on the *context* text (itβs in k['prompt_2'])
t5_ids = t5_tok([k.get("prompt_2")], return_tensors="pt").input_ids.to(pe.device)
t5_seq = t5_mod(t5_ids).last_hidden_state.float()
# 4) shunt β Ξ (FP32 β back-cast)
Ξ = shunt(t5_seq, clipL.float())[1].to(clipL.dtype)
clipL_shift = clipL + Ξ * strength
# 5) concatenate back
pe_shift = torch.cat([clipL_shift, clipG], dim=-1)
return pe_shift, ne, pool, npool
pipe.encode_prompt = encode_prompt_shunted.__get__(pipe, type(pipe))
PROMPT = "a naturally lit and beautiful room with a photorealistic depiction of a woman"
PROMPT_2 = "a realistic depiction of a woman sitting on a chair at a coffee shop sipping coffee, the environment is beautiful"
NEG = "blurry, distorted, monochrome, greyscale, watermark"
STEPS = 50
base_strength = 0.5
base_cfg = 7.5
for i in range(0, 4):
strength = base_strength + (i * 0.25)
cfg = base_cfg - (i * 0.25)
img = pipe(
PROMPT,
prompt_2=PROMPT_2,
negative_prompt=NEG,
num_inference_steps=STEPS,
cfg_scale=cfg,
generator=torch.Generator(device="cuda").manual_seed(420)
).images[0]
img.save(f"woman_cfg_{int(cfg*100)}_{int(strength*100)}.png")
# --- 4. generate -------------------------------------------------------
#img = pipe(
# PROMPT,
# negative_prompt=NEG,
# num_inference_steps=STEPS,
# generator=torch.Generator(device="cuda").manual_seed(420)
# ).images[0]
#img.save("majestic_baseline.png")#
#
#strength = 0.25
## --- 4. generate -------------------------------------------------------
#img = pipe(
# PROMPT,
# negative_prompt=NEG,
# num_inference_steps=STEPS,
# generator=torch.Generator(device="cuda").manual_seed(420)
# ).images[0]
#img.save("majestic_02.png")#
#strength = 0.5
## --- 4. generate -------------------------------------------------------
#img = pipe(
# PROMPT,
# negative_prompt=NEG,
# num_inference_steps=STEPS,
# generator=torch.Generator(device="cuda").manual_seed(420)
# ).images[0]
#img.save("majestic_05.png")#
#strength = 0.75
## --- 4. generate -------------------------------------------------------
#img = pipe(
# PROMPT,
# negative_prompt=NEG,
# num_inference_steps=STEPS,
# generator=torch.Generator(device="cuda").manual_seed(420)
# ).images[0]
#img.save("majestic_075.png")
``` |