This is a shunt that takes in the t5-small and the vit-h-14 simultaneously.
The t5-small is used as a conditioning factor for normalization and guidance.
There are many possible toggles and many variations for this shunt to be used.
The only one I hooked up is the basic tool meant for simple text encoder guidance, then I shunted it into clip_embeds for a test - only to see it fall apart.
The results that worked with diffusers without a headache ended up being prompt_encode overriding with a monkey patch.
Drag and drop into colab and generate some sdxl images with it. Two nodes; one above the generator
Fiddle with the taps and mess with the settings to add additional or reduce guidance from the T5-small variations with your clip_l.
import safetensors.torch as st
import torch
from diffusers import StableDiffusionXLPipeline
from transformers import T5TokenizerFast, T5EncoderModel
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# β Two-Stream Shunt Adapter
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
class TwoStreamShuntAdapter(nn.Module):
"""
Cross-attentive adapter that aligns T5 and CLIP token streams.
Returns:
anchor : (B, Lc, clip_dim)
delta : (B, Lc, clip_dim)
log_sigma : (B, Lc, clip_dim) β log Ο, always finite
attn_t2c : (B, heads, Lt, Lc)
attn_c2t : (B, heads, Lc, Lt)
tau : (heads, 1, 1) β per-head threshold param
g_pred : (B, 1) β guidance-scale prediction
gate : (B, Lc, 1) β per-token gate β (0,1)
"""
def __init__(
self,
t5_dim: int = 512,
clip_dim: int = 768,
bottleneck: int = 256,
heads: int = 8,
tau_init: float = 0.1,
max_guidance: float = 10.0,
):
super().__init__()
print("TwoStreamShuntAdapter init")
self.heads = heads
self.bneck = bottleneck
self.max_guidance = max_guidance
# projections
self.proj_t5 = nn.Linear(t5_dim, bottleneck)
self.proj_clip = nn.Linear(clip_dim, bottleneck)
# cross-attention
self.cross_t2c = nn.MultiheadAttention(
bottleneck, heads, batch_first=True, dropout=0.1
)
self.cross_c2t = nn.MultiheadAttention(
bottleneck, heads, batch_first=True, dropout=0.1
)
# head-wise Ο
self.tau = nn.Parameter(torch.full((heads, 1, 1), tau_init))
# convolutional pocket residual (depth-wise)
self.res1 = nn.Conv1d(
bottleneck, bottleneck, 3, padding=1, groups=bottleneck
)
self.res2 = nn.Conv1d(
bottleneck, bottleneck, 3, padding=1, groups=bottleneck
)
self.norm_res = nn.LayerNorm(bottleneck)
# fusion + projections
self.fuse = nn.Linear(2 * bottleneck, bottleneck)
self.anchor_proj = nn.Sequential(
nn.Linear(bottleneck, bottleneck), nn.GELU(),
nn.Linear(bottleneck, clip_dim)
)
self.delta_proj = nn.Sequential(
nn.Linear(bottleneck, bottleneck), nn.GELU(),
nn.Linear(bottleneck, clip_dim)
)
self.logsig_proj = nn.Sequential(
nn.Linear(bottleneck, bottleneck), nn.GELU(),
nn.Linear(bottleneck, clip_dim)
)
self.gate_proj = nn.Sequential(
nn.Linear(bottleneck, bottleneck), nn.GELU(),
nn.Linear(bottleneck, 1), nn.Sigmoid()
)
self.guidance_proj = nn.Sequential(
nn.LayerNorm(bottleneck), nn.Linear(bottleneck, 1), nn.Sigmoid()
)
def load_state_dict(self, args, **kwargs):
# remove _orig_mod from state dict before applying.
state_dict = {k.replace("_orig_mod.", ""): v for k, v in args.items()}
super().load_state_dict(state_dict, **kwargs)
def forward(self, t5_seq: torch.Tensor, clip_seq: torch.Tensor):
print("π£ SHUNT FORWARD CALLED")
B, Lt, _ = t5_seq.size()
_, Lc, _ = clip_seq.size()
# 1) project into bottleneck
t5_b = self.proj_t5(t5_seq) # (B, Lt, b)
clip_b = self.proj_clip(clip_seq) # (B, Lc, b)
# 2) cross-attention
t2c, attn_t2c = self.cross_t2c(
t5_b, clip_b, clip_b, need_weights=True, average_attn_weights=False
)
c2t, attn_c2t = self.cross_c2t(
clip_b, t5_b, t5_b, need_weights=True, average_attn_weights=False
)
# 3) convolutional pocket on T5βCLIP
x = t2c.transpose(1, 2) # (B, b, Lt)
x = F.gelu(self.res1(x))
x = F.gelu(self.res2(x)).transpose(1, 2) # (B, Lt, b)
pocket = self.norm_res(t2c + x) # (B, Lt, b)
# 4) fuse pocket avg with C2T
pocket_mean = pocket.mean(1, keepdim=True).expand(-1, Lc, -1)
h = F.gelu(self.fuse(torch.cat([pocket_mean, c2t], -1))) # (B, Lc, b)
# 5) outputs
anchor = self.anchor_proj(h) # (B,Lc,768)
delta_mean = self.delta_proj(h) # (B,Lc,768)
log_sigma = self.logsig_proj(h) # (B,Lc,768)
gate = self.gate_proj(h) # (B,Lc,1)
delta = delta_mean * gate # (B,Lc,768)
g_tok = self.guidance_proj(h).squeeze(-1) # (B,Lc)
g_pred = g_tok.mean(1, keepdim=True) * self.max_guidance
#print(anchor, delta, log_sigma, attn_t2c, attn_c2t, self.tau, g_pred, gate)
return anchor, delta, log_sigma, attn_t2c, attn_c2t, self.tau, g_pred, gate
# --- 1. load pipeline -------------------------------------------------
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16).to("cuda")
# --- 2. load tiny-T5 & shunt (fp32) -----------------------------------
t5_tok = T5TokenizerFast.from_pretrained("t5-small")
t5_mod = T5EncoderModel.from_pretrained("t5-small").eval().to("cuda")
shunt = TwoStreamShuntAdapter().float().eval().to("cuda")
shunt.load_state_dict( st.load_file("/content/drive/MyDrive/t5-clip-l-shunts/vitl14_t5small_shunt_vanilla_final.safetensors") )
# --- 3. wrap encode_prompt once ---------------------------------------
orig_encode = pipe.encode_prompt
config = {
"strength": 1.0,
"gate_gamma": 1.0,
"tau_scale": 1.0,
"guidance_gain": 1.0,
"guidance_bias": 0.0
}
gen = torch.Generator(device="cuda").manual_seed(420)
Place this on another node so you don't reload over and over.
strength = 0
# the working version that can't be omitted,
def stable_encode_prompt_shunted(self, *args, **kw):
pe, ne, pool, npool = orig_encode(*args, **kw) # regular call
# π split: first 768 dims are CLIP-L, rest 1280 are CLIP-G
clipL, clipG = pe[..., :768], pe[..., 768:]
# build T5 batch (handles CFG dup automatically because
# encode_prompt already concatenated negative & positive if needed)
bsz = clipL.shape[0]
texts = ["tmp"] * bsz # dummy, we only care about hidden states
t5_ids = t5_tok(texts, return_tensors="pt").input_ids.to("cuda")
t5_seq = t5_mod(t5_ids).last_hidden_state # (B,L,512)
# run adapter in fp32
delta = shunt(t5_seq.float(), clipL.float())[1] # second output is Ξ
delta = delta * strength # << your strength knob
clipL_shift = (clipL.float() + delta).to(clipL.dtype)
pe_shifted = torch.cat([clipL_shift, clipG], dim=-1)
return pe_shifted, ne, pool, npool
#-----------------------------------------------------------------------------------------
def encode_prompt_shunted(self, *a, **k):
# 1) run the normal encoder with βstyleβ & βcontextβ already split
pe, ne, pool, npool = orig_encode(*a, **k) # (B,77,2048)
# 2) split CLIP-L / CLIP-G
clipL, clipG = pe[..., :768], pe[..., 768:]
# 3) build T5 on the *context* text (itβs in k['prompt_2'])
t5_ids = t5_tok([k.get("prompt_2")], return_tensors="pt").input_ids.to(pe.device)
t5_seq = t5_mod(t5_ids).last_hidden_state.float()
# 4) shunt β Ξ (FP32 β back-cast)
Ξ = shunt(t5_seq, clipL.float())[1].to(clipL.dtype)
clipL_shift = clipL + Ξ * strength
# 5) concatenate back
pe_shift = torch.cat([clipL_shift, clipG], dim=-1)
return pe_shift, ne, pool, npool
pipe.encode_prompt = encode_prompt_shunted.__get__(pipe, type(pipe))
PROMPT = "a naturally lit and beautiful room with a photorealistic depiction of a woman"
PROMPT_2 = "a realistic depiction of a woman sitting on a chair at a coffee shop sipping coffee, the environment is beautiful"
NEG = "blurry, distorted, monochrome, greyscale, watermark"
STEPS = 50
base_strength = 0.5
base_cfg = 7.5
for i in range(0, 4):
strength = base_strength + (i * 0.25)
cfg = base_cfg - (i * 0.25)
img = pipe(
PROMPT,
prompt_2=PROMPT_2,
negative_prompt=NEG,
num_inference_steps=STEPS,
cfg_scale=cfg,
generator=torch.Generator(device="cuda").manual_seed(420)
).images[0]
img.save(f"woman_cfg_{int(cfg*100)}_{int(strength*100)}.png")
# --- 4. generate -------------------------------------------------------
#img = pipe(
# PROMPT,
# negative_prompt=NEG,
# num_inference_steps=STEPS,
# generator=torch.Generator(device="cuda").manual_seed(420)
# ).images[0]
#img.save("majestic_baseline.png")#
#
#strength = 0.25
## --- 4. generate -------------------------------------------------------
#img = pipe(
# PROMPT,
# negative_prompt=NEG,
# num_inference_steps=STEPS,
# generator=torch.Generator(device="cuda").manual_seed(420)
# ).images[0]
#img.save("majestic_02.png")#
#strength = 0.5
## --- 4. generate -------------------------------------------------------
#img = pipe(
# PROMPT,
# negative_prompt=NEG,
# num_inference_steps=STEPS,
# generator=torch.Generator(device="cuda").manual_seed(420)
# ).images[0]
#img.save("majestic_05.png")#
#strength = 0.75
## --- 4. generate -------------------------------------------------------
#img = pipe(
# PROMPT,
# negative_prompt=NEG,
# num_inference_steps=STEPS,
# generator=torch.Generator(device="cuda").manual_seed(420)
# ).images[0]
#img.save("majestic_075.png")
Model tree for AbstractPhil/t5-vit-14-v1
Base model
google-t5/t5-small