V1 weights test push

https://github.com/AbstractEyes/sd15-flow-trainer

https://huggingface.co/AbstractPhil/sd15-rectified-geometric-matching/blob/main/colab_trainer.py

Step 0

image

Step 500

image

Step 1000

image

Step 1500

image

KSimplex Geometric Attention Prior

Geometric cross-attention prior for SD1.5 using pentachoron (4-simplex) structures.

Architecture

Component Params
SD1.5 UNet (frozen) 859,520,964
Geo prior (trained) 4,845,725

The geometric prior modulates CLIP encoder hidden states through 4-layer stacked k-simplex attention before they reach the 16 cross-attention blocks in the UNet.

Simplex Configuration

Parameter Value
k (simplex dim) 4
Embedding dim 32
Feature dim 768
Stacked layers 4
Attention heads 8
Base deformation 0.25
Residual blend learnable
Timestep conditioned True

Usage

from sd15_trainer_geo.pipeline import load_pipeline, load_geo_from_hub

# Load base SD1.5 + fresh geo prior
pipe = load_pipeline()

# Load trained geo weights from this repo
load_geo_from_hub(pipe, "AbstractPhil/sd15-rectified-geometric-matching")

# Or one-shot: load base + geo in one call
pipe = load_pipeline(geo_repo_id="AbstractPhil/sd15-rectified-geometric-matching")

Training Info

  • dataset: AbstractPhil/imagenet-synthetic (flux_schnell_512)
  • samples: 10000
  • epochs: 1
  • shift: 2.5
  • base_lr: 0.0001
  • min_snr_gamma: 5.0
  • cfg_dropout: 0.1
  • batch_size: 6
  • loss_final: 0.3784324672818184

Post Analysis

image

image

image

image

License

MIT — AbstractPhil

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for AbstractPhil/sd15-rectified-geometric-matching

Finetuned
(345)
this model