πŸ«˜πŸ’Ž DavidBeans: Unified Vision-to-Crystal Architecture

This repository contains training runs for DavidBeans - a unified geometric deep learning architecture combining:

  • BEANS (ViT Backbone): Cantor-routed sparse attention
  • DAVID (Classifier): Multi-scale crystal projection with Cayley-Menger geometric regularization

Repository Structure

AbstractPhil/geovit-david-beans/
β”œβ”€β”€ README.md (this file)
└── weights/
    β”œβ”€β”€ run_001_baseline_YYYYMMDD_HHMMSS/
    β”‚   β”œβ”€β”€ best.safetensors
    β”‚   β”œβ”€β”€ epoch_010.safetensors
    β”‚   β”œβ”€β”€ config.json
    β”‚   β”œβ”€β”€ training_config.json
    β”‚   └── tensorboard/
    β”œβ”€β”€ run_002_5expert_5scale_YYYYMMDD_HHMMSS/
    β”‚   └── ...
    └── ...

Usage

from safetensors.torch import load_file
from david_beans import DavidBeans, DavidBeansConfig
import json

# Pick a run
run_path = "weights/run_002_5expert_5scale_20251129_171229"

# Load config
with open(f"{run_path}/config.json") as f:
    config_dict = json.load(f)
config = DavidBeansConfig(**config_dict)

# Load model
model = DavidBeans(config)
state_dict = load_file(f"{run_path}/best.safetensors")
model.load_state_dict(state_dict)

# Inference
model.eval()
with torch.no_grad():
    output = model(images)
    predictions = output['logits'].argmax(dim=-1)

Training Runs

Run Name Accuracy Notes
001 baseline 70.05% Initial CIFAR-100 run
002 5expert_5scale 68.34% 5 experts, 5 scales

Architecture

Image [B, 3, 32, 32]
       β”‚
       β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  BEANS BACKBONE                         β”‚
β”‚  β”œβ”€ Patch Embed β†’ [64 patches, dim]     β”‚
β”‚  β”œβ”€ Hybrid Cantor Router                β”‚
β”‚  β”œβ”€ N Γ— Attention Blocks                β”‚
β”‚  └─ N Γ— Pentachoron Expert Layers       β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
       β”‚
       β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  DAVID HEAD                             β”‚
β”‚  β”œβ”€ Multi-scale projection              β”‚
β”‚  β”œβ”€ Per-scale Crystal Heads             β”‚
β”‚  └─ Geometric Fusion                    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
       β”‚
       β–Ό
    [num_classes]

License

Apache 2.0

Downloads last month
732
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support