Improve language tag
#1
by
lbourdois
- opened
README.md
CHANGED
@@ -1,89 +1,103 @@
|
|
1 |
-
---
|
2 |
-
base_model:
|
3 |
-
- Qwen/Qwen2.5-3B-Instruct
|
4 |
-
pipeline_tag: text-generation
|
5 |
-
library_name: transformers
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
-
|
17 |
-
-
|
18 |
-
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
##
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
[contact Harshad Saykhedkar via LinkedIn](https://www.linkedin.com/in/harshadss/)
|
|
|
1 |
+
---
|
2 |
+
base_model:
|
3 |
+
- Qwen/Qwen2.5-3B-Instruct
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
library_name: transformers
|
6 |
+
language:
|
7 |
+
- zho
|
8 |
+
- eng
|
9 |
+
- fra
|
10 |
+
- spa
|
11 |
+
- por
|
12 |
+
- deu
|
13 |
+
- ita
|
14 |
+
- rus
|
15 |
+
- jpn
|
16 |
+
- kor
|
17 |
+
- vie
|
18 |
+
- tha
|
19 |
+
- ara
|
20 |
+
---
|
21 |
+
# AbleCredit Reasoner R0 Qwen 2.5 3B Instruct
|
22 |
+
|
23 |
+
## Introduction
|
24 |
+
|
25 |
+
This model is trained by Deepseek R1 style (GRPO) reinforcement learning on Qwen 2.5 3B Instruct as a base model.
|
26 |
+
Primarily intended for research in application of small LLMs trained using GRPO/RL in the domain of finance, credit underwriting etc.
|
27 |
+
|
28 |
+
### Model Description
|
29 |
+
|
30 |
+
- **Fine Tuned by:** AbleCredit (LightBees Technologies Private Limited, Bengaluru, India)
|
31 |
+
- **License:** We've retained the original Qwen research license. Note that license does not allow commercial use.
|
32 |
+
- **Finetuned from model:** Qwen/Qwen2.5-3B-Instruct
|
33 |
+
|
34 |
+
## How to Get Started with the Model
|
35 |
+
|
36 |
+
Use with standard Huggingface based setup
|
37 |
+
|
38 |
+
```python
|
39 |
+
model_name = "AbleCredit/AbleCredit-R0-Qwen-2.5-3B-Instruct" # or local path to model
|
40 |
+
system_prompt = {
|
41 |
+
"role": "system",
|
42 |
+
"content": (
|
43 |
+
"You are a helpful assistant. User asks a question the assistant answers it.\n"
|
44 |
+
"The assistant first thinks about reasoning process in mind and then provides the user with the answer."
|
45 |
+
),
|
46 |
+
}
|
47 |
+
|
48 |
+
suffix_prompt = {
|
49 |
+
"role": "assistant",
|
50 |
+
"content": "Let me solve this step by step.\n<think>",
|
51 |
+
}
|
52 |
+
|
53 |
+
prompt_msgs = [
|
54 |
+
system_prompt,
|
55 |
+
{"role": "user", "content": "What is 15 times 3 ?"},
|
56 |
+
suffix_prompt,
|
57 |
+
]
|
58 |
+
|
59 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
60 |
+
model_name,
|
61 |
+
device_map="auto",
|
62 |
+
torch_dtype=torch.bfloat16,
|
63 |
+
)
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
65 |
+
|
66 |
+
prompt = tokenizer.apply_chat_template(
|
67 |
+
prompt_msgs,
|
68 |
+
tokenize=False,
|
69 |
+
continue_final_message=True,
|
70 |
+
add_generation_prompt=False,
|
71 |
+
)
|
72 |
+
|
73 |
+
# Tokenize the prompt and move it to the appropriate device.
|
74 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda:0")
|
75 |
+
|
76 |
+
print("\nGenerating response...\n")
|
77 |
+
outputs = model.generate(
|
78 |
+
**inputs,
|
79 |
+
max_new_tokens=1024,
|
80 |
+
temperature=0.5,
|
81 |
+
min_p=0.01,
|
82 |
+
)
|
83 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
84 |
+
print("\nResponse:\n", response)
|
85 |
+
```
|
86 |
+
|
87 |
+
## Training Details
|
88 |
+
|
89 |
+
### Training Data
|
90 |
+
|
91 |
+
Trained using open source logical reasoning datasets and a proprietary finance dataset created by AbleCredit.com.
|
92 |
+
|
93 |
+
### Training Procedure
|
94 |
+
|
95 |
+
Trained using deepseek style reinforcement learning using GRPO with rule based rewards.
|
96 |
+
|
97 |
+
## Evaluation
|
98 |
+
|
99 |
+
- Model achieves ~67% score on GSM8K benchmark in a **zero shot** setting (check benchmarking script for more details).
|
100 |
+
|
101 |
+
## Model Card Contact
|
102 |
+
|
103 |
[contact Harshad Saykhedkar via LinkedIn](https://www.linkedin.com/in/harshadss/)
|