Question generation using T5 transformer
Input format: context: "..." answer: "..."
Import the pretrained model as well as tokenizer:
from transformers import T5ForConditionalGeneration, T5Tokenizer
model = T5ForConditionalGeneration.from_pretrained('AbhilashDatta/T5_qgen-squad-marco')
tokenizer = T5Tokenizer.from_pretrained('AbhilashDatta/T5_qgen-squad-marco')
Then use the tokenizer to encode/decode and model to generate:
input = "context: My name is Abhilash Datta. answer: Abhilash"
batch = tokenizer(input, padding='longest', max_length=512, return_tensors='pt')
inputs_batch = batch['input_ids'][0]
inputs_batch = torch.unsqueeze(inputs_batch, 0)
ques_id = model.generate(inputs_batch, max_length=100, early_stopping=True)
ques_batch = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=False) for g in ques_id]
print(ques_batch)
Output:
['what is my name']
- Downloads last month
- 8
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.