Qwen2.5-1.5B-Instruct

This version of Qwen2.5-1.5B-Instruct has been converted to run on the Axera NPU using w8a16 and w4a16 quantization.

This model has been optimized with the following LoRA:

Compatible with Pulsar2 version: 4.1

Feature

  • Support for longer contexts, in this sample it's 2.5k
  • Support context dialogue
  • System prompt kvcache is supported

Convert tools links:

For those who are interested in model conversion, you can try to export axmodel through the original repo : https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct-GPTQ-Int8

Pulsar2 Link, How to Convert LLM from Huggingface to axmodel

AXera NPU AXEngine LLM Runtime

AXera NPU AXCL LLM Runtime

Convert script

The follow show how to convert Qwen2.5-1.5B-Instruct-GPTQ-Int8

pulsar2 llm_build --input_path Qwen/Qwen2.5-1.5B-Instruct-GPTQ-Int8  \
                  --output_path Qwen/Qwen2.5-1.5B-Instruct-GPTQ-Int8-ctx-ax650 \
                  --hidden_state_type bf16 --kv_cache_len 2047 --prefill_len 128 \
                  --last_kv_cache_len 128 \
                  --last_kv_cache_len 256 \
                  --last_kv_cache_len 384 \
                  --last_kv_cache_len 512 \
                  --last_kv_cache_len 640 \
                  --last_kv_cache_len 768 \
                  --last_kv_cache_len 896 \
                  --last_kv_cache_len 1024 \
                  --chip AX650 -c 1 --parallel 8

Support Platform

Chips w8a16 w4a16 DDR Flash
AX650 12 tokens/sec 17 tokens/sec 2.3GB 2.3GB

How to use

Download all files from this repository to the device

root@ax650:/mnt/qtang/llm-test/Qwen2.5-1.5B-Instruct# tree -L 1
.
├── main_api
├── main_ax650
├── main_axcl_aarch64
├── main_axcl_x86
├── post_config.json
├── qwen2.5-1.5b-ctx-ax650
├── qwen2.5-1.5b-ctx-int4-ax650
├── qwen2.5_tokenizer
├── qwen2.5_tokenizer_uid.py
├── run_qwen2.5_1.5b_ctx_ax650_api.sh
├── run_qwen2.5_1.5b_ctx_ax650.sh
├── run_qwen2.5_1.5b_ctx_axcl_aarch64.sh
├── run_qwen2.5_1.5b_ctx_axcl_x86.sh
└── run_qwen2.5_1.5b_ctx_int4_ax650.sh

Start the Tokenizer service

root@ax650:/mnt/qtang/llm-test/Qwen2.5-1.5B-Instruct# python qwen2.5_tokenizer_uid.py
Server running at http://0.0.0.0:12345

System prompt cache

  • The System prompt can be preset through the configuration file from --system_prompt
  • The System prompt can be cached in the form of kv cache to a specified folder for quick loading at the next run time from --kvcache_path
  • This folder needs to be created manually before running, for example mkdir kvcache
root@ax650:/mnt/qtang/llm-test/qwen2.5-1.5b-ctx# cat run_qwen2.5_1.5b_ctx_ax650.sh
./main_ax650 \
--template_filename_axmodel "qwen2.5-1.5b-ctx-ax650/qwen2_p128_l%d_together.axmodel" \
--axmodel_num 28 \
--tokenizer_type 2 \
--url_tokenizer_model "http://0.0.0.0:12345" \
--filename_post_axmodel "qwen2.5-1.5b-ctx-ax650/qwen2_post.axmodel" \
--filename_tokens_embed "qwen2.5-1.5b-ctx-ax650/model.embed_tokens.weight.bfloat16.bin" \
--tokens_embed_num 151936 \
--tokens_embed_size 1536 \
--use_mmap_load_embed 1 \
--live_print 1

#--system_prompt "你的名字叫小智(allen),你是一个人畜无害的AI助手。深圳市今天(4月1日)阴天,愚人节,气温在14°C至19°C之间,微风。" \
#--kvcache_path "./kvcache" \

Inference with AX650 Host, such as M4N-Dock(爱芯派Pro) or AX650N DEMO Board

Open another terminal and run run_qwen2.5_1.5b_ctx_ax650.sh

root@ax650:/mnt/qtang/llm-test/qwen2.5-1.5b-ctx# ./run_qwen2.5_1.5b_ctx_ax650.sh
[I][                            Init][ 110]: LLM init start
[I][                            Init][  34]: connect http://0.0.0.0:12345 ok
[I][                            Init][  57]: uid: 1d0fadb4-1aa1-44d2-9587-e27badcd2ebf
bos_id: -1, eos_id: 151645
  3% | ██                                |   1 /  31 [4.80s<148.95s, 0.21 count/s] tokenizer init ok
[I][                            Init][  26]: LLaMaEmbedSelector use mmap
100% | ████████████████████████████████ |  31 /  31 [24.90s<24.90s, 1.24 count/s] init post axmodel ok,remain_cmm(7477 MB)
[I][                            Init][ 188]: max_token_len : 2047
[I][                            Init][ 193]: kv_cache_size : 256, kv_cache_num: 2047
[I][                            Init][ 201]: prefill_token_num : 128
[I][                            Init][ 205]: grp: 1, prefill_max_token_num : 1
[I][                            Init][ 205]: grp: 2, prefill_max_token_num : 128
[I][                            Init][ 205]: grp: 3, prefill_max_token_num : 256
[I][                            Init][ 205]: grp: 4, prefill_max_token_num : 384
[I][                            Init][ 205]: grp: 5, prefill_max_token_num : 512
[I][                            Init][ 205]: grp: 6, prefill_max_token_num : 640
[I][                            Init][ 205]: grp: 7, prefill_max_token_num : 768
[I][                            Init][ 205]: grp: 8, prefill_max_token_num : 896
[I][                            Init][ 205]: grp: 9, prefill_max_token_num : 1024
[I][                            Init][ 209]: prefill_max_token_num : 1024
[I][                     load_config][ 282]: load config:
{
    "enable_repetition_penalty": false,
    "enable_temperature": false,
    "enable_top_k_sampling": false,
    "enable_top_p_sampling": false,
    "penalty_window": 20,
    "repetition_penalty": 1.2,
    "temperature": 0.9,
    "top_k": 10,
    "top_p": 0.8
}

[I][                            Init][ 218]: LLM init ok
Type "q" to exit, Ctrl+c to stop current running
[I][          GenerateKVCachePrefill][ 271]: input token num : 21, prefill_split_num : 1 prefill_grpid : 2
[I][          GenerateKVCachePrefill][ 308]: input_num_token:21
[I][                            main][ 230]: precompute_len: 21
[I][                            main][ 231]: system_prompt:
prompt >> who are you?
[I][                      SetKVCache][ 531]: prefill_grpid:2 kv_cache_num:128 precompute_len:21 input_num_token:12
[I][                      SetKVCache][ 534]: current prefill_max_token_num:896
[I][                             Run][ 660]: input token num : 12, prefill_split_num : 1
[I][                             Run][ 686]: input_num_token:12
[I][                             Run][ 829]: ttft: 306.20 ms
I am Qwen, a large language model created by Alibaba Cloud. I am here to assist you with your questions and provide helpful information. How may I assist you today?

[N][                             Run][ 943]: hit eos,avg 12.20 token/s

[I][                      GetKVCache][ 500]: precompute_len:68, remaining:956
prompt >> q
root@ax650:/mnt/qtang/llm-test/qwen2.5-1.5b-ctx#
Downloads last month
40
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including AXERA-TECH/Qwen2.5-1.5B-Instruct