File size: 11,105 Bytes
44ca2cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0da68cf
44ca2cc
ce7de0b
44ca2cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0da68cf
44ca2cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce7de0b
 
44ca2cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
---
license: apache-2.0
datasets:
- AIDC-AI/Ovis-dataset
library_name: transformers
tags:
- MLLM
pipeline_tag: image-text-to-text
language:
- en
- zh
---
# Ovis2.5-2B
<div align="center">
  <img src=https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/3IK823BZ8w-mz_QfeYkDn.png width="30%"/>
</div>

<p align="center">
  <a href="https://github.com/AIDC-AI/Ovis/blob/main/docs/Ovis2_5_Tech_Report.pdf"><img src="https://img.shields.io/badge/📖_Technical_Report-Ovis2.5-b31b1b.svg" alt="technical report"></a>
  <a href="https://github.com/AIDC-AI/Ovis"><img src="https://img.shields.io/badge/GitHub-AIDC--AI/Ovis-blue?style=flat&logo=github" alt="code"></a>
  <a href="https://huggingface.co/spaces/AIDC-AI/Ovis2.5-2B"><img src="https://img.shields.io/badge/🎨_HF_Spaces-AIDC--AI/Ovis2.5--2B-lightblack" alt="demo"></a>
  <a href="https://huggingface.co/collections/AIDC-AI/ovis25-689ec1474633b2aab8809335"><img src="https://img.shields.io/badge/🤗_Models-AIDC--AI/Ovis2.5-yellow" alt="models"></a>
</p>


## Introduction

We are pleased to announce the release of **Ovis2.5**, the successor to Ovis2, designed for native-resolution visual perception and enhanced multimodal reasoning. 
It integrates a native-resolution vision transformer (NaViT) that processes images at their original, variable resolutions, eliminating the need for fixed-resolution tiling and preserving both fine details and global layout—crucial for visually dense content such as charts and diagrams. 
To strengthen reasoning, Ovis2.5 is trained not only on linear chain-of-thought (CoT) but also on reflective reasoning, including self-checking and revision. 
This advanced capability is available at inference as an optional *thinking mode*, enabling users to trade latency for higher accuracy on complex inputs.

Building on these advances, **Ovis2.5-9B** achieves an average score of 78.3 on the OpenCompass multimodal evaluation suite (SOTA among open-source MLLMs under 40B parameters), while the lightweight **Ovis2.5-2B** scores 73.9, continuing the “small model, big performance” philosophy for resource-constrained scenarios.


<div align="center">
    <img src="https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/kh-1dhZRAduP-P4SkIhXr.png" width="100%" />
</div>

**Key Features**  
* **Native-Resolution Perception** — NaViT vision encoder preserves fine details and global structure without lossy tiling.  
* **Deep-Reasoning Capability** — Optional *thinking mode* for self-checking and revision beyond linear CoT.  
* **Chart & Document OCR** — State-of-the-art at its scale for complex chart analysis, document understanding (including tables and forms), and OCR.  
* **Broad Task Coverage** — Demonstrates leading performance on image reasoning, video understanding, and grounding benchmarks, showcasing strong general multimodal capability.

<div align="center">
    <img src="https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/4kw2RRUhXDiMZdU7wGOfP.png" width="100%" />
</div>

## Quick Inference
Below is a simple example demonstrating how to run Ovis2.5 with a single image input.

First, install the required dependencies:
```bash
pip install torch==2.4.0 transformers==4.51.3 numpy==1.25.0 pillow==10.3.0 moviepy==1.0.3
pip install flash-attn==2.7.0.post2 --no-build-isolation
```
Then, run the following code:
```python
import torch
import requests
from PIL import Image
from transformers import AutoModelForCausalLM

MODEL_PATH = "AIDC-AI/Ovis2.5-2B"
THINKING = True  # Controls whether to enable thinking mode

model = AutoModelForCausalLM.from_pretrained(
    MODEL_PATH,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True
).cuda()

messages = [{
    "role": "user",
    "content": [
        {"type": "image", "image": Image.open(requests.get("https://cdn-uploads.huggingface.co/production/uploads/658a8a837959448ef5500ce5/TIlymOb86R6_Mez3bpmcB.png", stream=True).raw)},
        {"type": "text", "text": "Calculate the sum of the numbers in the middle box in figure (c)."},
    ],
}]

input_ids, pixel_values, grid_thws = model.preprocess_inputs(
    messages=messages,
    add_generation_prompt=True,
    enable_thinking=THINKING
)
input_ids = input_ids.cuda()
pixel_values = pixel_values.cuda() if pixel_values is not None else None
grid_thws = grid_thws.cuda() if grid_thws is not None else None

outputs = model.generate(
    inputs=input_ids,
    pixel_values=pixel_values,
    grid_thws=grid_thws,
    max_new_tokens=3072
)

response = model.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
```

<details>
<summary>Example: Multi-image</summary>
Demonstrates how to run inference with multiple images and a related question.

```python
# Multi-image inference
multi_image_files = [
    "/path/to/image_1.jpg",
    "/path/to/image_2.jpg",
    "/path/to/image_3.jpg",
]

content = [{"type": "image", "image": Image.open(p).convert("RGB")} for p in multi_image_files]
content.append({"type": "text", "text": "Describe the images."})
messages = [{"role": "user", "content": content}]

input_ids, pixel_values, grid_thws = model.preprocess_inputs(messages=messages, add_generation_prompt=True, max_pixels=896*896)
input_ids = input_ids.cuda()
pixel_values = pixel_values.cuda().to(model.dtype) if pixel_values is not None else None
grid_thws = grid_thws.cuda() if grid_thws is not None else None

with torch.no_grad():
    outputs = model.generate(inputs=input_ids, pixel_values=pixel_values, grid_thws=grid_thws,
                             max_new_tokens=1024, do_sample=True,
                             eos_token_id=model.text_tokenizer.eos_token_id,
                             pad_token_id=model.text_tokenizer.pad_token_id)
print(model.text_tokenizer.decode(outputs[0], skip_special_tokens=True))
```
</details>

<details>
<summary>Example: Video</summary>
Demonstrates how to run inference on a video by sampling multiple frames and asking the model to describe the content.

```python
# Video inference
from moviepy.editor import VideoFileClip # pip install moviepy==1.0.3

video_file = "/path/to/video_1.mp4"
num_frames = 8

with VideoFileClip(video_file) as clip:
    total_frames = int(clip.fps * clip.duration)
    indices = [int(i * total_frames / num_frames) for i in range(num_frames)]
    frames = [Image.fromarray(clip.get_frame(t)) for t in (idx / clip.fps for idx in indices)]

messages = [{"role": "user", "content": [
    {"type": "video", "video": frames},
    {"type": "text", "text": "Describe this video in detail."},
]}]

input_ids, pixel_values, grid_thws = model.preprocess_inputs(messages=messages, add_generation_prompt=True, max_pixels=896*896)
input_ids = input_ids.cuda()
pixel_values = pixel_values.cuda().to(model.dtype) if pixel_values is not None else None
grid_thws = grid_thws.cuda() if grid_thws is not None else None

with torch.no_grad():
    outputs = model.generate(inputs=input_ids, pixel_values=pixel_values, grid_thws=grid_thws,
                             max_new_tokens=1024, do_sample=True,
                             eos_token_id=model.text_tokenizer.eos_token_id,
                             pad_token_id=model.text_tokenizer.pad_token_id)
print(model.text_tokenizer.decode(outputs[0], skip_special_tokens=True))
```

</details>

<details>
<summary>Example: Text-only</summary>
Demonstrates how to run inference using only text input without any images or videos.

```python
# Text-only inference
messages = [{"role": "user", "content": "Hi, please introduce Yellow Mountain."}]

input_ids, _, _ = model.preprocess_inputs(messages=messages, add_generation_prompt=True)
input_ids = input_ids.cuda()

with torch.no_grad():
    outputs = model.generate(inputs=input_ids, max_new_tokens=1024, do_sample=True,
                             eos_token_id=model.text_tokenizer.eos_token_id,
                             pad_token_id=model.text_tokenizer.pad_token_id)
print(model.text_tokenizer.decode(outputs[0], skip_special_tokens=True))
```

</details>

To enable grounding, end your prompt with `Please provide the bounding box coordinates.` (for boxes) or `Please provide the point coordinates.` (for points). To target a specific object, wrap its description in `<ref>` tags, e.g.:

```text
Find the <ref>red apple</ref> in the image. Please provide the bounding box coordinates.
```

Coordinates are normalized to `[0,1)` with the origin `(0,0)` at the top-left corner of the image.

* Point: `<point>(x,y)</point>`
* Bounding box: `<box>(x1,y1),(x2,y2)</box>` where `(x1,y1)` is top-left, `(x2,y2)` is bottom-right.
* Multiple results can be listed in square brackets: `[<box>(...)</box>,<box>(...)</box> ]`

Example:

```text
The image features a serene scene with <ref>three birds</ref>[
  <box>(0.401,0.526),(0.430,0.557)</box>,
  <box>(0.489,0.494),(0.516,0.526)</box>,
  <box>(0.296,0.529),(0.324,0.576)</box>
] flying in formation against a clear blue sky.
```



## Model Zoo

| Ovis MLLMs |           ViT           |          LLM          |                      Model Weights                      |                           Demo                           |
|:-----------|:-----------------------:|:---------------------:|:-------------------------------------------------------:|:--------------------------------------------------------:|
| Ovis2.5-2B   | siglip2-so400m-patch16-512 | Qwen3-1.7B | [Huggingface](https://huggingface.co/AIDC-AI/Ovis2.5-2B)  | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis2.5-2B) |
| Ovis2.5-9B   | siglip2-so400m-patch16-512  |  Qwen3-8B  | [Huggingface](https://huggingface.co/AIDC-AI/Ovis2.5-9B)  | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis2.5-9B) |

## Performance
We evaluate Ovis2.5 using [VLMEvalKit](https://github.com/open-compass/VLMEvalKit), as employed in the OpenCompass multimodal and reasoning evaluation suite.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/zYtwH4Yw6q6591en_FVX-.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/zWbsInYCHZYEPlY75xrRd.png)


## Citation
If you find Ovis useful, please consider citing the paper
```
@article{lu2024ovis,
  title={Ovis: Structural Embedding Alignment for Multimodal Large Language Model},
  author={Shiyin Lu and Yang Li and Qing-Guo Chen and Zhao Xu and Weihua Luo and Kaifu Zhang and Han-Jia Ye},
  year={2024},
  journal={arXiv:2405.20797}
}
```

## License
This project is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0.txt) (SPDX-License-Identifier: Apache-2.0).

## Disclaimer
We used compliance-checking algorithms during the training process, to ensure the compliance of the trained model to the best of our ability. Due to the complexity of the data and the diversity of language model usage scenarios, we cannot guarantee that the model is completely free of copyright issues or improper content. If you believe anything infringes on your rights or generates improper content, please contact us, and we will promptly address the matter.