xxyyy123 commited on
Commit
44ca2cc
·
verified ·
1 Parent(s): bc440ea

Add files using upload-large-folder tool

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (C) 2025 AIDC-AI
2
+ Licensed under the Apache License, Version 2.0 (the "License");
3
+ you may not use this file except in compliance with the License.
4
+ You may obtain a copy of the License at
5
+ http://www.apache.org/licenses/LICENSE-2.0
6
+ Unless required by applicable law or agreed to in writing, software
7
+ distributed under the License is distributed on an "AS IS" BASIS,
8
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9
+ See the License for the specific language governing permissions and
10
+ limitations under the License.
NOTICE ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ Copyright (C) 2025 AIDC-AI
2
+ Licensed under the Apache 2.0 (the "License").
3
+ The model was trained based on the following models:
4
+ 1. Qwen3-1.7B (https://huggingface.co/Qwen/Qwen3-1.7B), license: Apache License 2.0 (https://huggingface.co/Qwen/Qwen3-1.7B/blob/main/LICENSE).
5
+ 2. Siglip2 (https://huggingface.co/google/siglip2-so400m-patch16-512), license: Apache License 2.0 (https://choosealicense.com/licenses/apache-2.0/).
README.md CHANGED
@@ -1,3 +1,242 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - AIDC-AI/Ovis-dataset
5
+ library_name: transformers
6
+ tags:
7
+ - MLLM
8
+ pipeline_tag: image-text-to-text
9
+ language:
10
+ - en
11
+ - zh
12
+ ---
13
+ # Ovis2.5-2B
14
+ <div align="center">
15
+ <img src=https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/3IK823BZ8w-mz_QfeYkDn.png width="30%"/>
16
+ </div>
17
+
18
+ <p align="center">
19
+ <a href="https://arxiv.org/pdf/2405.20797"><img src="https://img.shields.io/badge/📖_Technical_Report-Ovis2.5-b31b1b.svg" alt="technical report"></a>
20
+ <a href="https://github.com/AIDC-AI/Ovis"><img src="https://img.shields.io/badge/GitHub-AIDC--AI/Ovis-blue?style=flat&logo=github" alt="code"></a>
21
+ <a href="https://huggingface.co/spaces/AIDC-AI/Ovis2.5-2B"><img src="https://img.shields.io/badge/🎨_HF_Spaces-AIDC--AI/Ovis2.5--2B-lightblack" alt="demo"></a>
22
+ <a href="https://huggingface.co/collections/AIDC-AI/ovis25-689ec1474633b2aab8809335"><img src="https://img.shields.io/badge/🤗_Models-AIDC--AI/Ovis2.5-yellow" alt="models"></a>
23
+ </p>
24
+
25
+
26
+ ## Introduction
27
+
28
+ We are pleased to announce the release of **Ovis2.5**, the successor to Ovis2, designed for native-resolution visual perception and enhanced multimodal reasoning.
29
+ It integrates a native-resolution vision transformer (NaViT) that processes images at their original, variable resolutions, eliminating the need for fixed-resolution tiling and preserving both fine details and global layout—crucial for visually dense content such as charts and diagrams.
30
+ To strengthen reasoning, Ovis2.5 is trained not only on linear chain-of-thought (CoT) but also on reflective reasoning, including self-checking and revision.
31
+ This advanced capability is available at inference as an optional *thinking mode*, enabling users to trade latency for higher accuracy on complex inputs.
32
+
33
+ Building on these advances, **Ovis2.5-9B** achieves an average score of 78.3 on the OpenCompass multimodal evaluation suite (SOTA among open-source MLLMs under 40B parameters), while the lightweight **Ovis2.5-2B** scores 73.9, continuing the “small model, big performance” philosophy for resource-constrained scenarios.
34
+
35
+
36
+ <div align="center">
37
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/kh-1dhZRAduP-P4SkIhXr.png" width="100%" />
38
+ </div>
39
+
40
+ **Key Features**
41
+ * **Native-Resolution Perception** — NaViT vision encoder preserves fine details and global structure without lossy tiling.
42
+ * **Deep-Reasoning Capability** — Optional *thinking mode* for self-checking and revision beyond linear CoT.
43
+ * **Chart & Document OCR** — State-of-the-art at its scale for complex chart analysis, document understanding (including tables and forms), and OCR.
44
+ * **Broad Task Coverage** — Demonstrates leading performance on image reasoning, video understanding, and grounding benchmarks, showcasing strong general multimodal capability.
45
+
46
+ <div align="center">
47
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/4kw2RRUhXDiMZdU7wGOfP.png" width="100%" />
48
+ </div>
49
+
50
+ ## Quick Inference
51
+ Below is a simple example demonstrating how to run Ovis2.5 with a single image input.
52
+
53
+ First, install the required dependencies:
54
+ ```bash
55
+ pip install torch==2.4.0 transformers==4.51.3 numpy==1.25.0 pillow==10.3.0 moviepy==1.0.3
56
+ pip install flash-attn==2.7.0.post2 --no-build-isolation
57
+ ```
58
+ Then, run the following code:
59
+ ```python
60
+ import torch
61
+ import requests
62
+ from PIL import Image
63
+ from transformers import AutoModelForCausalLM
64
+
65
+ MODEL_PATH = "AIDC-AI/Ovis2.5-2B"
66
+ THINKING = True # Controls whether to enable thinking mode
67
+
68
+ model = AutoModelForCausalLM.from_pretrained(
69
+ MODEL_PATH,
70
+ torch_dtype=torch.bfloat16,
71
+ trust_remote_code=True
72
+ ).cuda()
73
+
74
+ messages = [{
75
+ "role": "user",
76
+ "content": [
77
+ {"type": "image", "image": Image.open(requests.get("https://cdn-uploads.huggingface.co/production/uploads/658a8a837959448ef5500ce5/TIlymOb86R6_Mez3bpmcB.png", stream=True).raw)},
78
+ {"type": "text", "text": "Calculate the sum of the numbers in the middle box in figure (c)."},
79
+ ],
80
+ }]
81
+
82
+ input_ids, pixel_values, grid_thws = model.preprocess_inputs(
83
+ messages=messages,
84
+ add_generation_prompt=True,
85
+ enable_thinking=THINKING
86
+ )
87
+ input_ids = input_ids.cuda()
88
+ pixel_values = pixel_values.cuda() if pixel_values is not None else None
89
+ grid_thws = grid_thws.cuda() if grid_thws is not None else None
90
+
91
+ outputs = model.generate(
92
+ inputs=input_ids,
93
+ pixel_values=pixel_values,
94
+ grid_thws=grid_thws,
95
+ max_new_tokens=3072
96
+ )
97
+
98
+ response = model.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
99
+ print(response)
100
+ ```
101
+
102
+ <details>
103
+ <summary>Example: Multi-image</summary>
104
+ Demonstrates how to run inference with multiple images and a related question.
105
+
106
+ ```python
107
+ # Multi-image inference
108
+ multi_image_files = [
109
+ "/path/to/image_1.jpg",
110
+ "/path/to/image_2.jpg",
111
+ "/path/to/image_3.jpg",
112
+ ]
113
+
114
+ content = [{"type": "image", "image": Image.open(p).convert("RGB")} for p in multi_image_files]
115
+ content.append({"type": "text", "text": "Describe the images."})
116
+ messages = [{"role": "user", "content": content}]
117
+
118
+ input_ids, pixel_values, grid_thws = model.preprocess_inputs(messages=messages, add_generation_prompt=True, max_pixels=896*896)
119
+ input_ids = input_ids.cuda()
120
+ pixel_values = pixel_values.cuda().to(model.dtype) if pixel_values is not None else None
121
+ grid_thws = grid_thws.cuda() if grid_thws is not None else None
122
+
123
+ with torch.no_grad():
124
+ outputs = model.generate(inputs=input_ids, pixel_values=pixel_values, grid_thws=grid_thws,
125
+ max_new_tokens=1024, do_sample=True,
126
+ eos_token_id=model.text_tokenizer.eos_token_id,
127
+ pad_token_id=model.text_tokenizer.pad_token_id)
128
+ print(model.text_tokenizer.decode(outputs[0], skip_special_tokens=True))
129
+ ```
130
+ </details>
131
+
132
+ <details>
133
+ <summary>Example: Video</summary>
134
+ Demonstrates how to run inference on a video by sampling multiple frames and asking the model to describe the content.
135
+
136
+ ```python
137
+ # Video inference
138
+ from moviepy.editor import VideoFileClip # pip install moviepy==1.0.3
139
+
140
+ video_file = "/path/to/video_1.mp4"
141
+ num_frames = 8
142
+
143
+ with VideoFileClip(video_file) as clip:
144
+ total_frames = int(clip.fps * clip.duration)
145
+ indices = [int(i * total_frames / num_frames) for i in range(num_frames)]
146
+ frames = [Image.fromarray(clip.get_frame(t)) for t in (idx / clip.fps for idx in indices)]
147
+
148
+ messages = [{"role": "user", "content": [
149
+ {"type": "video", "video": frames},
150
+ {"type": "text", "text": "Describe this video in detail."},
151
+ ]}]
152
+
153
+ input_ids, pixel_values, grid_thws = model.preprocess_inputs(messages=messages, add_generation_prompt=True, max_pixels=896*896)
154
+ input_ids = input_ids.cuda()
155
+ pixel_values = pixel_values.cuda().to(model.dtype) if pixel_values is not None else None
156
+ grid_thws = grid_thws.cuda() if grid_thws is not None else None
157
+
158
+ with torch.no_grad():
159
+ outputs = model.generate(inputs=input_ids, pixel_values=pixel_values, grid_thws=grid_thws,
160
+ max_new_tokens=1024, do_sample=True,
161
+ eos_token_id=model.text_tokenizer.eos_token_id,
162
+ pad_token_id=model.text_tokenizer.pad_token_id)
163
+ print(model.text_tokenizer.decode(outputs[0], skip_special_tokens=True))
164
+ ```
165
+
166
+ </details>
167
+
168
+ <details>
169
+ <summary>Example: Text-only</summary>
170
+ Demonstrates how to run inference using only text input without any images or videos.
171
+
172
+ ```python
173
+ # Text-only inference
174
+ messages = [{"role": "user", "content": "Hi, please introduce Yellow Mountain."}]
175
+
176
+ input_ids, _, _ = model.preprocess_inputs(messages=messages, add_generation_prompt=True)
177
+ input_ids = input_ids.cuda()
178
+
179
+ with torch.no_grad():
180
+ outputs = model.generate(inputs=input_ids, max_new_tokens=1024, do_sample=True,
181
+ eos_token_id=model.text_tokenizer.eos_token_id,
182
+ pad_token_id=model.text_tokenizer.pad_token_id)
183
+ print(model.text_tokenizer.decode(outputs[0], skip_special_tokens=True))
184
+ ```
185
+
186
+ </details>
187
+
188
+ To enable grounding, end your prompt with `Please provide the bounding box coordinates.` (for boxes) or `Please provide the point coordinates.` (for points). To target a specific object, wrap its description in `<ref>` tags, e.g.:
189
+
190
+ ```text
191
+ Find the <ref>red apple</ref> in the image. Please provide the bounding box coordinates.
192
+ ```
193
+
194
+ Coordinates are normalized to `[0,1)` with the origin `(0,0)` at the top-left corner of the image.
195
+
196
+ * Point: `<point>(x,y)</point>`
197
+ * Bounding box: `<box>(x1,y1),(x2,y2)</box>` where `(x1,y1)` is top-left, `(x2,y2)` is bottom-right.
198
+ * Multiple results can be listed in square brackets: `[<box>(...),<box>(...) ]`
199
+
200
+ Example:
201
+
202
+ ```text
203
+ The image features a serene scene with <ref>three birds</ref>[
204
+ <box>(0.401,0.526),(0.430,0.557)</box>,
205
+ <box>(0.489,0.494),(0.516,0.526)</box>,
206
+ <box>(0.296,0.529),(0.324,0.576)</box>
207
+ ] flying in formation against a clear blue sky.
208
+ ```
209
+
210
+
211
+
212
+ ## Model Zoo
213
+
214
+ | Ovis MLLMs | ViT | LLM | Model Weights | Demo |
215
+ |:-----------|:-----------------------:|:---------------------:|:-------------------------------------------------------:|:--------------------------------------------------------:|
216
+ | Ovis2.5-2B | siglip2-so400m-patch16-512 | Qwen3-1.7B | [Huggingface](https://huggingface.co/AIDC-AI/Ovis2.5-2B) | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis2.5-2B) |
217
+ | Ovis2.5-9B | siglip2-so400m-patch16-512 | Qwen3-8B | [Huggingface](https://huggingface.co/AIDC-AI/Ovis2.5-9B) | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis2.5-9B) |
218
+
219
+ ## Performance
220
+ We evaluate Ovis2.5 using [VLMEvalKit](https://github.com/open-compass/VLMEvalKit), as employed in the OpenCompass multimodal and reasoning evaluation suite.
221
+
222
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/zYtwH4Yw6q6591en_FVX-.png)
223
+
224
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/zWbsInYCHZYEPlY75xrRd.png)
225
+
226
+
227
+ ## Citation
228
+ If you find Ovis useful, please consider citing the paper
229
+ ```
230
+ @article{lu2024ovis,
231
+ title={Ovis: Structural Embedding Alignment for Multimodal Large Language Model},
232
+ author={Shiyin Lu and Yang Li and Qing-Guo Chen and Zhao Xu and Weihua Luo and Kaifu Zhang and Han-Jia Ye},
233
+ year={2024},
234
+ journal={arXiv:2405.20797}
235
+ }
236
+ ```
237
+
238
+ ## License
239
+ This project is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0.txt) (SPDX-License-Identifier: Apache-2.0).
240
+
241
+ ## Disclaimer
242
+ We used compliance-checking algorithms during the training process, to ensure the compliance of the trained model to the best of our ability. Due to the complexity of the data and the diversity of language model usage scenarios, we cannot guarantee that the model is completely free of copyright issues or improper content. If you believe anything infringes on your rights or generates improper content, please contact us, and we will promptly address the matter.
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{%- for message in messages %}{{- '<|im_start|>' + message.role + '\n'}}{%- if message.role == 'system' or message.role == 'user' %}{%- if message.content is string %}{{- message.content | replace('<image>', '') | replace('<video>', '') }}{%- else %}{%- for item in message.content %}{%- if item.type == 'text' and 'text' in item %}{{- item.text | replace('<image>', '') | replace('<video>', '') }}{%- elif item.type == 'image' and 'image' in item %}{{- '<image>'}}{%- elif item.type == 'video' and 'video' in item %}{{- '<video>'}}{%- else %}{{- raise_exception('Invalid content type. Supported types for system and user are text, image, video.')}}{%- endif %}{%- if not loop.last %}{{- '\n'}}{%- endif %}{%- endfor %}{%- endif %}{%- elif message.role == 'assistant' %}{%- set content = '' %}{%- if message.content is string %}{%- set content = message.content | replace('<image>', '') | replace('<video>', '') %}{%- else %}{%- for item in message.content %}{%- if item.type == 'text' and 'text' in item %}{%- set content = content ~ (item.text | replace('<image>', '') | replace('<video>', '')) %}{%- else %}{{- raise_exception('Invalid content type. Supported type for assistant is text.')}}{%- endif %}{%- endfor %}{%- endif %}{%- set content = content.split('</think>')[-1].lstrip('\n') %}{{- content }}{%- else %}{{- raise_exception('Invalid role. Supported roles are system, user, assistant.')}}{%- endif %}{{- '<|im_end|>\n'}}{%- endfor %}{%- if add_generation_prompt %}{{- '<|im_start|>assistant\n' }}{%- if enable_thinking is defined and enable_thinking is false %}{{- '<think>\n\n</think>\n\n' }}{%- endif %}{%- endif %}"
3
+ }
config.json ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Ovis2_5"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_ovis2_5.Ovis2_5_Config",
7
+ "AutoModelForCausalLM": "modeling_ovis2_5.Ovis2_5"
8
+ },
9
+ "conversation_formatter_class": "Qwen3ConversationFormatter",
10
+ "hidden_size": 2048,
11
+ "vocab_size": 151936,
12
+ "num_attention_heads": 32,
13
+ "max_position_embeddings": 40960,
14
+ "llm_config": {
15
+ "_attn_implementation_autoset": true,
16
+ "_name_or_path": "Qwen/Qwen3-1.7B",
17
+ "architectures": [
18
+ "Qwen3ForCausalLM"
19
+ ],
20
+ "attention_bias": false,
21
+ "attention_dropout": 0.0,
22
+ "bos_token_id": 151643,
23
+ "eos_token_id": 151645,
24
+ "head_dim": 128,
25
+ "hidden_act": "silu",
26
+ "hidden_size": 2048,
27
+ "initializer_range": 0.02,
28
+ "intermediate_size": 6144,
29
+ "max_position_embeddings": 40960,
30
+ "max_window_layers": 28,
31
+ "model_type": "qwen3",
32
+ "num_attention_heads": 16,
33
+ "num_hidden_layers": 28,
34
+ "num_key_value_heads": 8,
35
+ "rms_norm_eps": 1e-06,
36
+ "rope_scaling": null,
37
+ "rope_theta": 1000000,
38
+ "sliding_window": null,
39
+ "tie_word_embeddings": true,
40
+ "torch_dtype": "float32",
41
+ "use_cache": true,
42
+ "use_sliding_window": false,
43
+ "vocab_size": 151936
44
+ },
45
+ "model_type": "ovis2_5",
46
+ "torch_dtype": "bfloat16",
47
+ "transformers_version": "4.51.3",
48
+ "use_cache": true,
49
+ "visual_vocab_size": 65536,
50
+ "vit_config": {
51
+ "_attn_implementation_autoset": true,
52
+ "_name_or_path": "google/siglip2-so400m-patch16-512",
53
+ "attention_dropout": 0.0,
54
+ "fullatt_block_indexes": null,
55
+ "hidden_act": "gelu_pytorch_tanh",
56
+ "hidden_size": 1152,
57
+ "hidden_stride": 2,
58
+ "image_size": 512,
59
+ "intermediate_size": 4304,
60
+ "layer_norm_eps": 1e-06,
61
+ "model_type": "siglip2_navit",
62
+ "num_attention_heads": 16,
63
+ "num_channels": 3,
64
+ "num_hidden_layers": 27,
65
+ "num_patches": -1,
66
+ "patch_size": 16,
67
+ "preserve_original_pe": true,
68
+ "temporal_patch_size": 1,
69
+ "torch_dtype": "float32",
70
+ "use_rope": true,
71
+ "window_size": 112
72
+ }
73
+ }
configuration_ovis2_5.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Optional, List, Union
2
+
3
+ from transformers import Qwen3Config
4
+ from transformers.configuration_utils import PretrainedConfig
5
+
6
+ __all__ = ["Siglip2NavitConfig", "Ovis2_5_Config"]
7
+
8
+
9
+ class Siglip2NavitConfig(PretrainedConfig):
10
+ """This is the configuration class to store the configuration of an [`AIMv2Model`].
11
+
12
+ Instantiating a configuration with the defaults will yield a similar configuration
13
+ to that of the [apple/aimv2-large-patch14-224](https://huggingface.co/apple/aimv2-large-patch14-224).
14
+
15
+ Args:
16
+ hidden_size: Dimension of the hidden representations.
17
+ intermediate_size: Dimension of the SwiGLU representations.
18
+ num_hidden_layers: Number of hidden layers in the Transformer.
19
+ num_attention_heads: Number of attention heads for each attention layer
20
+ in the Transformer.
21
+ num_channels: Number of input channels.
22
+ image_size: Image size.
23
+ patch_size: Patch size.
24
+ rms_norm_eps: Epsilon value used for the RMS normalization layer.
25
+ attention_dropout: Dropout ratio for attention probabilities.
26
+ projection_dropout: Dropout ratio for the projection layer after the attention.
27
+ qkv_bias: Whether to add a bias to the queries, keys and values.
28
+ use_bias: Whether to add a bias in the feed-forward and projection layers.
29
+ kwargs: Keyword arguments for the [`PretrainedConfig`].
30
+ """
31
+
32
+ model_type: str = "siglip2_navit"
33
+
34
+ def __init__(
35
+ self,
36
+ hidden_size: int = 1024,
37
+ intermediate_size: int = 4096,
38
+ num_hidden_layers: int = 24,
39
+ num_attention_heads: int = 16,
40
+ num_channels: int = 3,
41
+ num_patches: int = -1,
42
+ image_size: int = 512,
43
+ patch_size: int = 16,
44
+ hidden_act: str="gelu_pytorch_tanh",
45
+ layer_norm_eps: float = 1e-6,
46
+ attention_dropout: float = 0.0,
47
+ hidden_stride: int = 2,
48
+ window_size: int = 112,
49
+ fullatt_block_indexes: Optional[list] = None,
50
+ temporal_patch_size: int = 1,
51
+ preserve_original_pe: bool = True,
52
+ use_rope: bool = True,
53
+ **kwargs: Any,
54
+ ):
55
+ super().__init__(**kwargs)
56
+ self.hidden_size = hidden_size
57
+ self.intermediate_size = intermediate_size
58
+ self.num_hidden_layers = num_hidden_layers
59
+ self.num_attention_heads = num_attention_heads
60
+ self.num_channels = num_channels
61
+ self.num_patches = num_patches
62
+ self.patch_size = patch_size
63
+ self.image_size = image_size
64
+ self.hidden_act = hidden_act
65
+ self.attention_dropout = attention_dropout
66
+ self.layer_norm_eps = layer_norm_eps
67
+ self.hidden_stride = hidden_stride
68
+ self.window_size = window_size
69
+ self.fullatt_block_indexes = fullatt_block_indexes
70
+ self.temporal_patch_size = temporal_patch_size
71
+ self.preserve_original_pe = preserve_original_pe
72
+ self.use_rope = use_rope
73
+
74
+ class Ovis2_5_Config(PretrainedConfig):
75
+ model_type = "ovis2_5"
76
+ sub_configs = dict(llm_config=Qwen3Config, vit_config=Siglip2NavitConfig)
77
+
78
+ def __init__(self,
79
+ llm_config: Optional[Union[Qwen3Config, dict]] = None,
80
+ vit_config: Optional[Union[Siglip2NavitConfig, dict]] = None,
81
+ visual_vocab_size=65536,
82
+ hidden_size=None,
83
+ **kwargs
84
+ ):
85
+ super().__init__(**kwargs)
86
+ if isinstance(llm_config, dict):
87
+ llm_config = Qwen3Config(**llm_config)
88
+ self.llm_config = llm_config
89
+ if isinstance(vit_config, dict):
90
+ vit_config = Siglip2NavitConfig(**vit_config)
91
+ self.vit_config = vit_config
92
+ self.visual_vocab_size = visual_vocab_size
93
+ self.hidden_size = hidden_size
94
+ if kwargs.get('attn_implementation'):
95
+ self.llm_config._attn_implementation = kwargs['attn_implementation']
96
+ self.vit_config._attn_implementation = kwargs['attn_implementation']
generation_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "multimodal_max_length": 8192,
9
+ "pad_token_id": 151643,
10
+ "repetition_penalty": 1.05,
11
+ "temperature": 0.6,
12
+ "top_k": 20,
13
+ "top_p": 0.95,
14
+ "transformers_version": "4.51.3"
15
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bd7cec79fedabcd8149c62934fdffff7d840de111e8a17335d346bcbeba0c12
3
+ size 4872524976
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0bb2d37fcbf03254938b72d4bf88da9f84c8c0307b4f7d6ee79aa0a3c2f7732d
3
+ size 268435576
model.safetensors.index.json ADDED
@@ -0,0 +1,758 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 5140859344
4
+ },
5
+ "weight_map": {
6
+ "llm.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
+ "llm.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
+ "llm.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
9
+ "llm.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
10
+ "llm.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "llm.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "llm.model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
13
+ "llm.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
14
+ "llm.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
15
+ "llm.model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
16
+ "llm.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
17
+ "llm.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
18
+ "llm.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
19
+ "llm.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
20
+ "llm.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
21
+ "llm.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
22
+ "llm.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
23
+ "llm.model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
24
+ "llm.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
25
+ "llm.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
26
+ "llm.model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
27
+ "llm.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
28
+ "llm.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
29
+ "llm.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
30
+ "llm.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
31
+ "llm.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
32
+ "llm.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
33
+ "llm.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
34
+ "llm.model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
35
+ "llm.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
36
+ "llm.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
37
+ "llm.model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
38
+ "llm.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
39
+ "llm.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
40
+ "llm.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
41
+ "llm.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
42
+ "llm.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
43
+ "llm.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
44
+ "llm.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "llm.model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
46
+ "llm.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
47
+ "llm.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
48
+ "llm.model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
49
+ "llm.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
50
+ "llm.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
51
+ "llm.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
52
+ "llm.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
53
+ "llm.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
54
+ "llm.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
55
+ "llm.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
56
+ "llm.model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
57
+ "llm.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
58
+ "llm.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
59
+ "llm.model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
60
+ "llm.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
61
+ "llm.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
62
+ "llm.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "llm.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "llm.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
65
+ "llm.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
66
+ "llm.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "llm.model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
68
+ "llm.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
69
+ "llm.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
70
+ "llm.model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
71
+ "llm.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
72
+ "llm.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
73
+ "llm.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
74
+ "llm.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
75
+ "llm.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
76
+ "llm.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
77
+ "llm.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
78
+ "llm.model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
79
+ "llm.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
80
+ "llm.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
81
+ "llm.model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
82
+ "llm.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
83
+ "llm.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
84
+ "llm.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "llm.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
86
+ "llm.model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
87
+ "llm.model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
88
+ "llm.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
89
+ "llm.model.layers.15.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
90
+ "llm.model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
91
+ "llm.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
92
+ "llm.model.layers.15.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
93
+ "llm.model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
94
+ "llm.model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
95
+ "llm.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
96
+ "llm.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
97
+ "llm.model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
98
+ "llm.model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
99
+ "llm.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
100
+ "llm.model.layers.16.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
101
+ "llm.model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
102
+ "llm.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
103
+ "llm.model.layers.16.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
104
+ "llm.model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
105
+ "llm.model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
106
+ "llm.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
107
+ "llm.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
108
+ "llm.model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
109
+ "llm.model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
110
+ "llm.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
111
+ "llm.model.layers.17.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
112
+ "llm.model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
113
+ "llm.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
114
+ "llm.model.layers.17.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
115
+ "llm.model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
116
+ "llm.model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
117
+ "llm.model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
118
+ "llm.model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
119
+ "llm.model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
120
+ "llm.model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
121
+ "llm.model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
122
+ "llm.model.layers.18.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
123
+ "llm.model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
124
+ "llm.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
125
+ "llm.model.layers.18.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
126
+ "llm.model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
127
+ "llm.model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "llm.model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "llm.model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "llm.model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "llm.model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "llm.model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "llm.model.layers.19.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
134
+ "llm.model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "llm.model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "llm.model.layers.19.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
137
+ "llm.model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "llm.model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
139
+ "llm.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
140
+ "llm.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
141
+ "llm.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
142
+ "llm.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
143
+ "llm.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
144
+ "llm.model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
145
+ "llm.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
146
+ "llm.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
147
+ "llm.model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
148
+ "llm.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
149
+ "llm.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
150
+ "llm.model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
151
+ "llm.model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
152
+ "llm.model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
153
+ "llm.model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
154
+ "llm.model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
155
+ "llm.model.layers.20.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
156
+ "llm.model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
157
+ "llm.model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
158
+ "llm.model.layers.20.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
159
+ "llm.model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
160
+ "llm.model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
161
+ "llm.model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
162
+ "llm.model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
163
+ "llm.model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
164
+ "llm.model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
165
+ "llm.model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
166
+ "llm.model.layers.21.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
167
+ "llm.model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
168
+ "llm.model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
169
+ "llm.model.layers.21.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
170
+ "llm.model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
171
+ "llm.model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
172
+ "llm.model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
173
+ "llm.model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
174
+ "llm.model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
175
+ "llm.model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
176
+ "llm.model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "llm.model.layers.22.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
178
+ "llm.model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
179
+ "llm.model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
180
+ "llm.model.layers.22.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
181
+ "llm.model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
182
+ "llm.model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
183
+ "llm.model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
184
+ "llm.model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
185
+ "llm.model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
186
+ "llm.model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
187
+ "llm.model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
188
+ "llm.model.layers.23.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
189
+ "llm.model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
190
+ "llm.model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
191
+ "llm.model.layers.23.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
192
+ "llm.model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
193
+ "llm.model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
194
+ "llm.model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
195
+ "llm.model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
196
+ "llm.model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
197
+ "llm.model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
198
+ "llm.model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
199
+ "llm.model.layers.24.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
200
+ "llm.model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
201
+ "llm.model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
202
+ "llm.model.layers.24.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
203
+ "llm.model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
204
+ "llm.model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
205
+ "llm.model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
206
+ "llm.model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
207
+ "llm.model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
208
+ "llm.model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
209
+ "llm.model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
210
+ "llm.model.layers.25.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
211
+ "llm.model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
212
+ "llm.model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
213
+ "llm.model.layers.25.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
214
+ "llm.model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
215
+ "llm.model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
216
+ "llm.model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
217
+ "llm.model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
218
+ "llm.model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
219
+ "llm.model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
220
+ "llm.model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
221
+ "llm.model.layers.26.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
222
+ "llm.model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
223
+ "llm.model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
224
+ "llm.model.layers.26.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
225
+ "llm.model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
226
+ "llm.model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
227
+ "llm.model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
228
+ "llm.model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
229
+ "llm.model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
230
+ "llm.model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
231
+ "llm.model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
232
+ "llm.model.layers.27.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
233
+ "llm.model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
234
+ "llm.model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
235
+ "llm.model.layers.27.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
236
+ "llm.model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
237
+ "llm.model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
238
+ "llm.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
239
+ "llm.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
240
+ "llm.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
241
+ "llm.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
242
+ "llm.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
243
+ "llm.model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
244
+ "llm.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
245
+ "llm.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
246
+ "llm.model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
247
+ "llm.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
248
+ "llm.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
249
+ "llm.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
250
+ "llm.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
251
+ "llm.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
252
+ "llm.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
253
+ "llm.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
254
+ "llm.model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
255
+ "llm.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
256
+ "llm.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
257
+ "llm.model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
258
+ "llm.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
259
+ "llm.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
260
+ "llm.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
261
+ "llm.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
262
+ "llm.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
263
+ "llm.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
264
+ "llm.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
265
+ "llm.model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
266
+ "llm.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
267
+ "llm.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
268
+ "llm.model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
269
+ "llm.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
270
+ "llm.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
271
+ "llm.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
272
+ "llm.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
273
+ "llm.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
274
+ "llm.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
275
+ "llm.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
276
+ "llm.model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
277
+ "llm.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
278
+ "llm.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
279
+ "llm.model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
280
+ "llm.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
281
+ "llm.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
282
+ "llm.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
283
+ "llm.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
284
+ "llm.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
285
+ "llm.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
286
+ "llm.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
287
+ "llm.model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
288
+ "llm.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
289
+ "llm.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
290
+ "llm.model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
291
+ "llm.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
292
+ "llm.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
293
+ "llm.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
294
+ "llm.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
295
+ "llm.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
296
+ "llm.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
297
+ "llm.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
298
+ "llm.model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
299
+ "llm.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
300
+ "llm.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
301
+ "llm.model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
302
+ "llm.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
303
+ "llm.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
304
+ "llm.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
305
+ "llm.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
306
+ "llm.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
307
+ "llm.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
308
+ "llm.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
309
+ "llm.model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
310
+ "llm.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
311
+ "llm.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
312
+ "llm.model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
313
+ "llm.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
314
+ "llm.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
315
+ "llm.model.norm.weight": "model-00001-of-00002.safetensors",
316
+ "visual_tokenizer.head.0.weight": "model-00001-of-00002.safetensors",
317
+ "visual_tokenizer.head.1.bias": "model-00001-of-00002.safetensors",
318
+ "visual_tokenizer.head.1.weight": "model-00001-of-00002.safetensors",
319
+ "visual_tokenizer.vit.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00002.safetensors",
320
+ "visual_tokenizer.vit.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00002.safetensors",
321
+ "visual_tokenizer.vit.vision_model.embeddings.position_embedding.weight": "model-00001-of-00002.safetensors",
322
+ "visual_tokenizer.vit.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00002.safetensors",
323
+ "visual_tokenizer.vit.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00002.safetensors",
324
+ "visual_tokenizer.vit.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00002.safetensors",
325
+ "visual_tokenizer.vit.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00002.safetensors",
326
+ "visual_tokenizer.vit.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
327
+ "visual_tokenizer.vit.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
328
+ "visual_tokenizer.vit.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
329
+ "visual_tokenizer.vit.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
330
+ "visual_tokenizer.vit.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
331
+ "visual_tokenizer.vit.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
332
+ "visual_tokenizer.vit.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
333
+ "visual_tokenizer.vit.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
334
+ "visual_tokenizer.vit.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
335
+ "visual_tokenizer.vit.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
336
+ "visual_tokenizer.vit.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
337
+ "visual_tokenizer.vit.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
338
+ "visual_tokenizer.vit.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00002.safetensors",
339
+ "visual_tokenizer.vit.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00002.safetensors",
340
+ "visual_tokenizer.vit.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00002.safetensors",
341
+ "visual_tokenizer.vit.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00002.safetensors",
342
+ "visual_tokenizer.vit.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
343
+ "visual_tokenizer.vit.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
344
+ "visual_tokenizer.vit.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
345
+ "visual_tokenizer.vit.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
346
+ "visual_tokenizer.vit.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
347
+ "visual_tokenizer.vit.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
348
+ "visual_tokenizer.vit.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
349
+ "visual_tokenizer.vit.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
350
+ "visual_tokenizer.vit.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
351
+ "visual_tokenizer.vit.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
352
+ "visual_tokenizer.vit.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
353
+ "visual_tokenizer.vit.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
354
+ "visual_tokenizer.vit.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00002.safetensors",
355
+ "visual_tokenizer.vit.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00002.safetensors",
356
+ "visual_tokenizer.vit.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00002.safetensors",
357
+ "visual_tokenizer.vit.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00002.safetensors",
358
+ "visual_tokenizer.vit.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
359
+ "visual_tokenizer.vit.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
360
+ "visual_tokenizer.vit.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
361
+ "visual_tokenizer.vit.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
362
+ "visual_tokenizer.vit.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
363
+ "visual_tokenizer.vit.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
364
+ "visual_tokenizer.vit.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
365
+ "visual_tokenizer.vit.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
366
+ "visual_tokenizer.vit.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
367
+ "visual_tokenizer.vit.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
368
+ "visual_tokenizer.vit.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
369
+ "visual_tokenizer.vit.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
370
+ "visual_tokenizer.vit.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00002.safetensors",
371
+ "visual_tokenizer.vit.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00002.safetensors",
372
+ "visual_tokenizer.vit.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00002.safetensors",
373
+ "visual_tokenizer.vit.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00002.safetensors",
374
+ "visual_tokenizer.vit.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
375
+ "visual_tokenizer.vit.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
376
+ "visual_tokenizer.vit.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
377
+ "visual_tokenizer.vit.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
378
+ "visual_tokenizer.vit.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
379
+ "visual_tokenizer.vit.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
380
+ "visual_tokenizer.vit.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
381
+ "visual_tokenizer.vit.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
382
+ "visual_tokenizer.vit.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
383
+ "visual_tokenizer.vit.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
384
+ "visual_tokenizer.vit.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
385
+ "visual_tokenizer.vit.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
386
+ "visual_tokenizer.vit.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00002.safetensors",
387
+ "visual_tokenizer.vit.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00002.safetensors",
388
+ "visual_tokenizer.vit.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00002.safetensors",
389
+ "visual_tokenizer.vit.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00002.safetensors",
390
+ "visual_tokenizer.vit.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
391
+ "visual_tokenizer.vit.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
392
+ "visual_tokenizer.vit.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
393
+ "visual_tokenizer.vit.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
394
+ "visual_tokenizer.vit.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
395
+ "visual_tokenizer.vit.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
396
+ "visual_tokenizer.vit.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
397
+ "visual_tokenizer.vit.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
398
+ "visual_tokenizer.vit.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
399
+ "visual_tokenizer.vit.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
400
+ "visual_tokenizer.vit.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
401
+ "visual_tokenizer.vit.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
402
+ "visual_tokenizer.vit.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00002.safetensors",
403
+ "visual_tokenizer.vit.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00002.safetensors",
404
+ "visual_tokenizer.vit.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00002.safetensors",
405
+ "visual_tokenizer.vit.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00002.safetensors",
406
+ "visual_tokenizer.vit.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
407
+ "visual_tokenizer.vit.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
408
+ "visual_tokenizer.vit.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
409
+ "visual_tokenizer.vit.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
410
+ "visual_tokenizer.vit.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
411
+ "visual_tokenizer.vit.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
412
+ "visual_tokenizer.vit.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
413
+ "visual_tokenizer.vit.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
414
+ "visual_tokenizer.vit.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
415
+ "visual_tokenizer.vit.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
416
+ "visual_tokenizer.vit.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
417
+ "visual_tokenizer.vit.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
418
+ "visual_tokenizer.vit.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00002.safetensors",
419
+ "visual_tokenizer.vit.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00002.safetensors",
420
+ "visual_tokenizer.vit.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00002.safetensors",
421
+ "visual_tokenizer.vit.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00002.safetensors",
422
+ "visual_tokenizer.vit.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
423
+ "visual_tokenizer.vit.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
424
+ "visual_tokenizer.vit.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
425
+ "visual_tokenizer.vit.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
426
+ "visual_tokenizer.vit.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
427
+ "visual_tokenizer.vit.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
428
+ "visual_tokenizer.vit.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
429
+ "visual_tokenizer.vit.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
430
+ "visual_tokenizer.vit.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
431
+ "visual_tokenizer.vit.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
432
+ "visual_tokenizer.vit.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
433
+ "visual_tokenizer.vit.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
434
+ "visual_tokenizer.vit.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00002.safetensors",
435
+ "visual_tokenizer.vit.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00002.safetensors",
436
+ "visual_tokenizer.vit.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00002.safetensors",
437
+ "visual_tokenizer.vit.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00002.safetensors",
438
+ "visual_tokenizer.vit.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
439
+ "visual_tokenizer.vit.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
440
+ "visual_tokenizer.vit.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
441
+ "visual_tokenizer.vit.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
442
+ "visual_tokenizer.vit.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
443
+ "visual_tokenizer.vit.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
444
+ "visual_tokenizer.vit.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
445
+ "visual_tokenizer.vit.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
446
+ "visual_tokenizer.vit.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
447
+ "visual_tokenizer.vit.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
448
+ "visual_tokenizer.vit.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
449
+ "visual_tokenizer.vit.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
450
+ "visual_tokenizer.vit.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00002.safetensors",
451
+ "visual_tokenizer.vit.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00002.safetensors",
452
+ "visual_tokenizer.vit.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00002.safetensors",
453
+ "visual_tokenizer.vit.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00002.safetensors",
454
+ "visual_tokenizer.vit.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
455
+ "visual_tokenizer.vit.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
456
+ "visual_tokenizer.vit.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
457
+ "visual_tokenizer.vit.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
458
+ "visual_tokenizer.vit.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
459
+ "visual_tokenizer.vit.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
460
+ "visual_tokenizer.vit.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
461
+ "visual_tokenizer.vit.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
462
+ "visual_tokenizer.vit.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
463
+ "visual_tokenizer.vit.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
464
+ "visual_tokenizer.vit.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
465
+ "visual_tokenizer.vit.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
466
+ "visual_tokenizer.vit.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00002.safetensors",
467
+ "visual_tokenizer.vit.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00002.safetensors",
468
+ "visual_tokenizer.vit.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00002.safetensors",
469
+ "visual_tokenizer.vit.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00002.safetensors",
470
+ "visual_tokenizer.vit.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
471
+ "visual_tokenizer.vit.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
472
+ "visual_tokenizer.vit.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
473
+ "visual_tokenizer.vit.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
474
+ "visual_tokenizer.vit.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
475
+ "visual_tokenizer.vit.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
476
+ "visual_tokenizer.vit.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
477
+ "visual_tokenizer.vit.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
478
+ "visual_tokenizer.vit.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
479
+ "visual_tokenizer.vit.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
480
+ "visual_tokenizer.vit.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
481
+ "visual_tokenizer.vit.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
482
+ "visual_tokenizer.vit.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00002.safetensors",
483
+ "visual_tokenizer.vit.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00002.safetensors",
484
+ "visual_tokenizer.vit.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00002.safetensors",
485
+ "visual_tokenizer.vit.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00002.safetensors",
486
+ "visual_tokenizer.vit.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
487
+ "visual_tokenizer.vit.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
488
+ "visual_tokenizer.vit.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
489
+ "visual_tokenizer.vit.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
490
+ "visual_tokenizer.vit.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
491
+ "visual_tokenizer.vit.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
492
+ "visual_tokenizer.vit.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
493
+ "visual_tokenizer.vit.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
494
+ "visual_tokenizer.vit.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
495
+ "visual_tokenizer.vit.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
496
+ "visual_tokenizer.vit.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
497
+ "visual_tokenizer.vit.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
498
+ "visual_tokenizer.vit.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00002.safetensors",
499
+ "visual_tokenizer.vit.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00002.safetensors",
500
+ "visual_tokenizer.vit.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00002.safetensors",
501
+ "visual_tokenizer.vit.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00002.safetensors",
502
+ "visual_tokenizer.vit.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
503
+ "visual_tokenizer.vit.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
504
+ "visual_tokenizer.vit.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
505
+ "visual_tokenizer.vit.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
506
+ "visual_tokenizer.vit.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
507
+ "visual_tokenizer.vit.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
508
+ "visual_tokenizer.vit.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
509
+ "visual_tokenizer.vit.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
510
+ "visual_tokenizer.vit.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
511
+ "visual_tokenizer.vit.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
512
+ "visual_tokenizer.vit.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
513
+ "visual_tokenizer.vit.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
514
+ "visual_tokenizer.vit.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00002.safetensors",
515
+ "visual_tokenizer.vit.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00002.safetensors",
516
+ "visual_tokenizer.vit.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00002.safetensors",
517
+ "visual_tokenizer.vit.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00002.safetensors",
518
+ "visual_tokenizer.vit.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
519
+ "visual_tokenizer.vit.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
520
+ "visual_tokenizer.vit.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
521
+ "visual_tokenizer.vit.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
522
+ "visual_tokenizer.vit.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
523
+ "visual_tokenizer.vit.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
524
+ "visual_tokenizer.vit.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
525
+ "visual_tokenizer.vit.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
526
+ "visual_tokenizer.vit.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
527
+ "visual_tokenizer.vit.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
528
+ "visual_tokenizer.vit.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
529
+ "visual_tokenizer.vit.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
530
+ "visual_tokenizer.vit.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00002.safetensors",
531
+ "visual_tokenizer.vit.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00002.safetensors",
532
+ "visual_tokenizer.vit.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00002.safetensors",
533
+ "visual_tokenizer.vit.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00002.safetensors",
534
+ "visual_tokenizer.vit.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
535
+ "visual_tokenizer.vit.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
536
+ "visual_tokenizer.vit.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
537
+ "visual_tokenizer.vit.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
538
+ "visual_tokenizer.vit.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
539
+ "visual_tokenizer.vit.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
540
+ "visual_tokenizer.vit.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
541
+ "visual_tokenizer.vit.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
542
+ "visual_tokenizer.vit.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
543
+ "visual_tokenizer.vit.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
544
+ "visual_tokenizer.vit.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
545
+ "visual_tokenizer.vit.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
546
+ "visual_tokenizer.vit.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00002.safetensors",
547
+ "visual_tokenizer.vit.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00002.safetensors",
548
+ "visual_tokenizer.vit.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00002.safetensors",
549
+ "visual_tokenizer.vit.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00002.safetensors",
550
+ "visual_tokenizer.vit.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
551
+ "visual_tokenizer.vit.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
552
+ "visual_tokenizer.vit.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
553
+ "visual_tokenizer.vit.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
554
+ "visual_tokenizer.vit.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
555
+ "visual_tokenizer.vit.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
556
+ "visual_tokenizer.vit.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
557
+ "visual_tokenizer.vit.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
558
+ "visual_tokenizer.vit.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
559
+ "visual_tokenizer.vit.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
560
+ "visual_tokenizer.vit.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
561
+ "visual_tokenizer.vit.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
562
+ "visual_tokenizer.vit.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00002.safetensors",
563
+ "visual_tokenizer.vit.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00002.safetensors",
564
+ "visual_tokenizer.vit.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00002.safetensors",
565
+ "visual_tokenizer.vit.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00002.safetensors",
566
+ "visual_tokenizer.vit.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
567
+ "visual_tokenizer.vit.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
568
+ "visual_tokenizer.vit.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
569
+ "visual_tokenizer.vit.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
570
+ "visual_tokenizer.vit.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
571
+ "visual_tokenizer.vit.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
572
+ "visual_tokenizer.vit.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
573
+ "visual_tokenizer.vit.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
574
+ "visual_tokenizer.vit.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
575
+ "visual_tokenizer.vit.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
576
+ "visual_tokenizer.vit.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
577
+ "visual_tokenizer.vit.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
578
+ "visual_tokenizer.vit.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00002.safetensors",
579
+ "visual_tokenizer.vit.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00002.safetensors",
580
+ "visual_tokenizer.vit.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00002.safetensors",
581
+ "visual_tokenizer.vit.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00002.safetensors",
582
+ "visual_tokenizer.vit.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
583
+ "visual_tokenizer.vit.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
584
+ "visual_tokenizer.vit.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
585
+ "visual_tokenizer.vit.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
586
+ "visual_tokenizer.vit.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
587
+ "visual_tokenizer.vit.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
588
+ "visual_tokenizer.vit.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
589
+ "visual_tokenizer.vit.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
590
+ "visual_tokenizer.vit.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
591
+ "visual_tokenizer.vit.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
592
+ "visual_tokenizer.vit.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
593
+ "visual_tokenizer.vit.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
594
+ "visual_tokenizer.vit.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00002.safetensors",
595
+ "visual_tokenizer.vit.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00002.safetensors",
596
+ "visual_tokenizer.vit.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00002.safetensors",
597
+ "visual_tokenizer.vit.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00002.safetensors",
598
+ "visual_tokenizer.vit.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
599
+ "visual_tokenizer.vit.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
600
+ "visual_tokenizer.vit.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
601
+ "visual_tokenizer.vit.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
602
+ "visual_tokenizer.vit.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
603
+ "visual_tokenizer.vit.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
604
+ "visual_tokenizer.vit.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
605
+ "visual_tokenizer.vit.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
606
+ "visual_tokenizer.vit.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
607
+ "visual_tokenizer.vit.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
608
+ "visual_tokenizer.vit.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
609
+ "visual_tokenizer.vit.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
610
+ "visual_tokenizer.vit.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00002.safetensors",
611
+ "visual_tokenizer.vit.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00002.safetensors",
612
+ "visual_tokenizer.vit.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00002.safetensors",
613
+ "visual_tokenizer.vit.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00002.safetensors",
614
+ "visual_tokenizer.vit.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
615
+ "visual_tokenizer.vit.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
616
+ "visual_tokenizer.vit.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
617
+ "visual_tokenizer.vit.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
618
+ "visual_tokenizer.vit.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
619
+ "visual_tokenizer.vit.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
620
+ "visual_tokenizer.vit.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
621
+ "visual_tokenizer.vit.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
622
+ "visual_tokenizer.vit.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
623
+ "visual_tokenizer.vit.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
624
+ "visual_tokenizer.vit.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
625
+ "visual_tokenizer.vit.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
626
+ "visual_tokenizer.vit.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00002.safetensors",
627
+ "visual_tokenizer.vit.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00002.safetensors",
628
+ "visual_tokenizer.vit.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00002.safetensors",
629
+ "visual_tokenizer.vit.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00002.safetensors",
630
+ "visual_tokenizer.vit.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
631
+ "visual_tokenizer.vit.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
632
+ "visual_tokenizer.vit.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
633
+ "visual_tokenizer.vit.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
634
+ "visual_tokenizer.vit.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
635
+ "visual_tokenizer.vit.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
636
+ "visual_tokenizer.vit.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
637
+ "visual_tokenizer.vit.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
638
+ "visual_tokenizer.vit.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
639
+ "visual_tokenizer.vit.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
640
+ "visual_tokenizer.vit.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
641
+ "visual_tokenizer.vit.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
642
+ "visual_tokenizer.vit.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00002.safetensors",
643
+ "visual_tokenizer.vit.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00002.safetensors",
644
+ "visual_tokenizer.vit.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00002.safetensors",
645
+ "visual_tokenizer.vit.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00002.safetensors",
646
+ "visual_tokenizer.vit.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
647
+ "visual_tokenizer.vit.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
648
+ "visual_tokenizer.vit.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
649
+ "visual_tokenizer.vit.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
650
+ "visual_tokenizer.vit.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
651
+ "visual_tokenizer.vit.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
652
+ "visual_tokenizer.vit.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
653
+ "visual_tokenizer.vit.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
654
+ "visual_tokenizer.vit.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
655
+ "visual_tokenizer.vit.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
656
+ "visual_tokenizer.vit.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
657
+ "visual_tokenizer.vit.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
658
+ "visual_tokenizer.vit.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00002.safetensors",
659
+ "visual_tokenizer.vit.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00002.safetensors",
660
+ "visual_tokenizer.vit.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00002.safetensors",
661
+ "visual_tokenizer.vit.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00002.safetensors",
662
+ "visual_tokenizer.vit.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
663
+ "visual_tokenizer.vit.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
664
+ "visual_tokenizer.vit.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
665
+ "visual_tokenizer.vit.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
666
+ "visual_tokenizer.vit.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
667
+ "visual_tokenizer.vit.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
668
+ "visual_tokenizer.vit.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
669
+ "visual_tokenizer.vit.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
670
+ "visual_tokenizer.vit.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
671
+ "visual_tokenizer.vit.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
672
+ "visual_tokenizer.vit.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
673
+ "visual_tokenizer.vit.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
674
+ "visual_tokenizer.vit.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00002.safetensors",
675
+ "visual_tokenizer.vit.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00002.safetensors",
676
+ "visual_tokenizer.vit.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00002.safetensors",
677
+ "visual_tokenizer.vit.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00002.safetensors",
678
+ "visual_tokenizer.vit.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
679
+ "visual_tokenizer.vit.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
680
+ "visual_tokenizer.vit.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
681
+ "visual_tokenizer.vit.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
682
+ "visual_tokenizer.vit.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
683
+ "visual_tokenizer.vit.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
684
+ "visual_tokenizer.vit.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
685
+ "visual_tokenizer.vit.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
686
+ "visual_tokenizer.vit.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
687
+ "visual_tokenizer.vit.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
688
+ "visual_tokenizer.vit.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
689
+ "visual_tokenizer.vit.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
690
+ "visual_tokenizer.vit.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00002.safetensors",
691
+ "visual_tokenizer.vit.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00002.safetensors",
692
+ "visual_tokenizer.vit.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00002.safetensors",
693
+ "visual_tokenizer.vit.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00002.safetensors",
694
+ "visual_tokenizer.vit.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
695
+ "visual_tokenizer.vit.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
696
+ "visual_tokenizer.vit.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
697
+ "visual_tokenizer.vit.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
698
+ "visual_tokenizer.vit.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
699
+ "visual_tokenizer.vit.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
700
+ "visual_tokenizer.vit.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
701
+ "visual_tokenizer.vit.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
702
+ "visual_tokenizer.vit.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
703
+ "visual_tokenizer.vit.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
704
+ "visual_tokenizer.vit.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
705
+ "visual_tokenizer.vit.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
706
+ "visual_tokenizer.vit.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00002.safetensors",
707
+ "visual_tokenizer.vit.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00002.safetensors",
708
+ "visual_tokenizer.vit.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00002.safetensors",
709
+ "visual_tokenizer.vit.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00002.safetensors",
710
+ "visual_tokenizer.vit.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
711
+ "visual_tokenizer.vit.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
712
+ "visual_tokenizer.vit.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
713
+ "visual_tokenizer.vit.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
714
+ "visual_tokenizer.vit.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
715
+ "visual_tokenizer.vit.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
716
+ "visual_tokenizer.vit.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
717
+ "visual_tokenizer.vit.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
718
+ "visual_tokenizer.vit.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
719
+ "visual_tokenizer.vit.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
720
+ "visual_tokenizer.vit.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
721
+ "visual_tokenizer.vit.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
722
+ "visual_tokenizer.vit.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00002.safetensors",
723
+ "visual_tokenizer.vit.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00002.safetensors",
724
+ "visual_tokenizer.vit.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00002.safetensors",
725
+ "visual_tokenizer.vit.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00002.safetensors",
726
+ "visual_tokenizer.vit.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
727
+ "visual_tokenizer.vit.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
728
+ "visual_tokenizer.vit.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
729
+ "visual_tokenizer.vit.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
730
+ "visual_tokenizer.vit.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
731
+ "visual_tokenizer.vit.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
732
+ "visual_tokenizer.vit.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
733
+ "visual_tokenizer.vit.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
734
+ "visual_tokenizer.vit.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
735
+ "visual_tokenizer.vit.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
736
+ "visual_tokenizer.vit.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
737
+ "visual_tokenizer.vit.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
738
+ "visual_tokenizer.vit.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00002.safetensors",
739
+ "visual_tokenizer.vit.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00002.safetensors",
740
+ "visual_tokenizer.vit.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00002.safetensors",
741
+ "visual_tokenizer.vit.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00002.safetensors",
742
+ "visual_tokenizer.vit.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
743
+ "visual_tokenizer.vit.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
744
+ "visual_tokenizer.vit.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
745
+ "visual_tokenizer.vit.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
746
+ "visual_tokenizer.vit.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
747
+ "visual_tokenizer.vit.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
748
+ "visual_tokenizer.vit.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
749
+ "visual_tokenizer.vit.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
750
+ "visual_tokenizer.vit.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
751
+ "visual_tokenizer.vit.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
752
+ "visual_tokenizer.vit.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
753
+ "visual_tokenizer.vit.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
754
+ "visual_tokenizer.vit.vision_model.post_layernorm.bias": "model-00001-of-00002.safetensors",
755
+ "visual_tokenizer.vit.vision_model.post_layernorm.weight": "model-00001-of-00002.safetensors",
756
+ "vte.weight": "model-00002-of-00002.safetensors"
757
+ }
758
+ }
modeling_ovis2_5.py ADDED
@@ -0,0 +1,903 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import Dict, List, Optional, Tuple, Union
3
+
4
+ import PIL.Image
5
+ import numpy as np
6
+ import torch
7
+ from flash_attn import flash_attn_varlen_func
8
+ from flash_attn.layers.rotary import apply_rotary_emb
9
+ from torch import Tensor, nn
10
+ from torch.nn import functional as F
11
+ from transformers import (
12
+ AutoConfig,
13
+ AutoImageProcessor,
14
+ AutoModel,
15
+ AutoModelForCausalLM,
16
+ AutoTokenizer,
17
+ )
18
+ from transformers.activations import ACT2FN
19
+ from transformers.generation.utils import GenerateOutput
20
+ from transformers.modeling_outputs import BaseModelOutputWithNoAttention
21
+ from transformers.modeling_utils import PreTrainedModel
22
+
23
+ from .configuration_ovis2_5 import Siglip2NavitConfig, Ovis2_5_Config
24
+
25
+ IMAGE_PLACEHOLDER = "<image>"
26
+ IMAGE_PLACEHOLDER_ID = -200
27
+ VIDEO_PLACEHOLDER = "<video>"
28
+ VIDEO_PLACEHOLDER_ID = -201
29
+
30
+ VISUAL_ATOM_ID = -300
31
+ INDICATOR_IDS = [-301, -302, -303, -304]
32
+
33
+ # copied from qwen2.5-vl
34
+ class VisionRotaryEmbedding(nn.Module):
35
+ def __init__(self, dim: int, theta: float = 10000.0) -> None:
36
+ super().__init__()
37
+ inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
38
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
39
+
40
+ def forward(self, seqlen: int) -> torch.Tensor:
41
+ seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
42
+ freqs = torch.outer(seq, self.inv_freq)
43
+ return freqs
44
+
45
+
46
+ class Siglip2VisionEmbeddings(nn.Module):
47
+ def __init__(self, config: Siglip2NavitConfig):
48
+ super().__init__()
49
+ self.config = config
50
+ self.embed_dim = config.hidden_size
51
+ self.patch_size = config.patch_size
52
+ self.image_size = config.image_size
53
+ self.num_patches = config.num_patches
54
+ self.preserve_original_pe = config.preserve_original_pe
55
+ self.hidden_stride = config.hidden_stride
56
+
57
+
58
+ # siglip2 naflex
59
+ if self.num_patches > 0:
60
+ self.patch_embedding = nn.Linear(
61
+ in_features=config.num_channels * self.patch_size * self.patch_size,
62
+ out_features=self.embed_dim,
63
+ )
64
+ if self.preserve_original_pe:
65
+ self.position_embedding_size = int(self.num_patches**0.5)
66
+ self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim)
67
+
68
+ else:
69
+ self.patch_embedding = nn.Conv2d(
70
+ in_channels=config.num_channels,
71
+ out_channels=self.embed_dim,
72
+ kernel_size=self.patch_size,
73
+ stride=self.patch_size,
74
+ padding="valid",
75
+ )
76
+ if self.preserve_original_pe:
77
+ self.num_patches = (self.image_size // self.patch_size) ** 2
78
+ self.position_embedding_size = self.image_size // self.patch_size
79
+ self.position_embedding = nn.Embedding(self.num_patches, self.embed_dim)
80
+
81
+ @staticmethod
82
+ def resize_positional_embeddings(
83
+ positional_embeddings: torch.Tensor,
84
+ spatial_shapes: torch.LongTensor,
85
+ max_length: int,
86
+ ) -> torch.Tensor:
87
+ """
88
+ Resize positional embeddings to image-specific size and pad to a fixed size.
89
+
90
+ Args:
91
+ positional_embeddings (`torch.Tensor`):
92
+ Position embeddings of shape (height, width, embed_dim)
93
+ spatial_shapes (`torch.LongTensor`):
94
+ Spatial shapes of shape (batch_size, 2) to resize the positional embeddings to
95
+ max_length (`int`):
96
+ Maximum length of the positional embeddings to pad resized positional embeddings to
97
+
98
+ Returns:
99
+ `torch.Tensor`: Embeddings of shape (batch_size, max_length, embed_dim)
100
+ """
101
+ batch_size = spatial_shapes.shape[0]
102
+ embed_dim = positional_embeddings.shape[-1]
103
+ source_dtype = positional_embeddings.dtype
104
+
105
+ resulted_positional_embeddings = torch.empty(
106
+ (batch_size, max_length, embed_dim),
107
+ device=positional_embeddings.device,
108
+ dtype=source_dtype,
109
+ )
110
+
111
+ # (height, width, embed_dim) -> (1, embed_dim, height, width) for interpolation
112
+ positional_embeddings = positional_embeddings.permute(2, 0, 1).unsqueeze(0)
113
+
114
+ # Upcast to float32 on CPU because antialias is not supported for bfloat16/float16 on CPU
115
+ if positional_embeddings.device.type == "cpu":
116
+ positional_embeddings = positional_embeddings.to(torch.float32)
117
+
118
+ for i in range(batch_size):
119
+ # (1, dim, height, width) -> (1, dim, target_height, target_width)
120
+ height, width = spatial_shapes[i]
121
+ resized_embeddings = F.interpolate(
122
+ positional_embeddings,
123
+ size=(height, width),
124
+ mode="bilinear",
125
+ align_corners=False,
126
+ antialias=True,
127
+ )
128
+
129
+ # (1, dim, target_height, target_width) -> (target_height * target_width, dim)
130
+ resized_embeddings = resized_embeddings.reshape(embed_dim, height * width).transpose(0, 1)
131
+
132
+ # Cast to original dtype
133
+ resized_embeddings = resized_embeddings.to(source_dtype)
134
+
135
+ resulted_positional_embeddings[i, : height * width] = resized_embeddings
136
+ resulted_positional_embeddings[i, height * width :] = resized_embeddings[0]
137
+
138
+ return resulted_positional_embeddings
139
+
140
+ def forward(self, pixel_values: torch.FloatTensor,
141
+ grid_thws: Optional[torch.LongTensor] = None) -> torch.Tensor:
142
+ """
143
+ Args:
144
+ pixel_values (`torch.FloatTensor`):
145
+ Pixel values of shape (num_patches, num_channels * temporal_patch_size * patch_size * patch_size)
146
+ grid_thws: (`torch.LongTensor`):
147
+ grid shape (num_patches, 3)
148
+ """
149
+
150
+ # Apply patch embeddings to already patchified pixel values
151
+ target_dtype = self.patch_embedding.weight.dtype
152
+ if isinstance(self.patch_embedding, nn.Linear):
153
+ patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))
154
+ elif isinstance(self.patch_embedding, nn.Conv2d):
155
+ pixel_values = pixel_values.view(-1, self.config.num_channels * self.config.temporal_patch_size, self.patch_size,
156
+ self.patch_size)
157
+ patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype))
158
+ patch_embeds = patch_embeds.reshape(-1, self.embed_dim)
159
+
160
+
161
+ if self.preserve_original_pe:
162
+ assert grid_thws is not None
163
+ pos_embed_new = torch.zeros_like(patch_embeds)
164
+ ori_h = ori_w = self.position_embedding_size
165
+ positional_embeddings = self.position_embedding.weight.reshape(
166
+ self.position_embedding_size, self.position_embedding_size, -1
167
+ ).unsqueeze(0).permute(0,3,1,2)
168
+ # pos_embed = self.pos_embed.reshape(1, ori_h, ori_w, -1).permute(0, 3, 1, 2)
169
+ cnt = 0
170
+ for t, h, w in grid_thws:
171
+ thw = t * h * w
172
+ pe = F.interpolate(positional_embeddings, size=(h, w), mode='bicubic', align_corners=False)
173
+ pe = pe.permute(0, 2, 3, 1).reshape(1, h * w, -1)
174
+ pe = pe[0].repeat(t, 1)
175
+ pe = pe.reshape(t, h // self.hidden_stride, self.hidden_stride, w // self.hidden_stride,
176
+ self.hidden_stride, -1)
177
+ pe = pe.permute(0, 1, 3, 2, 4, 5).reshape(thw, -1)
178
+ pos_embed_new[cnt:cnt + thw] = pe
179
+ cnt += thw
180
+ patch_embeds = patch_embeds + pos_embed_new
181
+
182
+ return patch_embeds
183
+
184
+
185
+ # copied from qwen2.5-vl
186
+ def apply_rotary_pos_emb_flashatt(
187
+ q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
188
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
189
+ cos = cos.chunk(2, dim=-1)[0].contiguous()
190
+ sin = sin.chunk(2, dim=-1)[0].contiguous()
191
+ q_embed = apply_rotary_emb(q.float(), cos.float(), sin.float()).type_as(q)
192
+ k_embed = apply_rotary_emb(k.float(), cos.float(), sin.float()).type_as(k)
193
+ return q_embed, k_embed
194
+
195
+
196
+ class Siglip2Attention(nn.Module):
197
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
198
+
199
+ def __init__(self, config):
200
+ super().__init__()
201
+ self.config = config
202
+ self.embed_dim = config.hidden_size
203
+ self.num_heads = config.num_attention_heads
204
+ self.head_dim = self.embed_dim // self.num_heads
205
+ if self.head_dim * self.num_heads != self.embed_dim:
206
+ raise ValueError(
207
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
208
+ f" {self.num_heads})."
209
+ )
210
+ self.scale = self.head_dim**-0.5
211
+ self.dropout = config.attention_dropout
212
+ self.is_causal = False
213
+
214
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
215
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
216
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
217
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
218
+
219
+ self.use_rope = config.use_rope
220
+
221
+ def forward(
222
+ self,
223
+ hidden_states: torch.Tensor,
224
+ cu_seqlens: torch.Tensor,
225
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
226
+ ) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
227
+ """Input shape: Batch x Time x Channel"""
228
+
229
+ seq_length, embed_dim = hidden_states.shape
230
+
231
+ queries = self.q_proj(hidden_states)
232
+ keys = self.k_proj(hidden_states)
233
+ values = self.v_proj(hidden_states)
234
+
235
+ queries = queries.view(seq_length, self.num_heads, self.head_dim)
236
+ keys = keys.view(seq_length, self.num_heads, self.head_dim)
237
+ values = values.view(seq_length, self.num_heads, self.head_dim)
238
+
239
+ if self.use_rope:
240
+ cos, sin = position_embeddings
241
+ queries, keys = apply_rotary_pos_emb_flashatt(queries.unsqueeze(0), keys.unsqueeze(0), cos, sin)
242
+ queries = queries.squeeze(0)
243
+ keys = keys.squeeze(0)
244
+
245
+ max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
246
+ attn_output = flash_attn_varlen_func(queries, keys, values, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
247
+ seq_length, -1
248
+ )
249
+ attn_output = self.out_proj(attn_output)
250
+ return attn_output
251
+
252
+ class Siglip2MLP(nn.Module):
253
+ def __init__(self, config):
254
+ super().__init__()
255
+ self.config = config
256
+ self.activation_fn = ACT2FN[config.hidden_act]
257
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
258
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
259
+
260
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
261
+ hidden_states = self.fc1(hidden_states)
262
+ hidden_states = self.activation_fn(hidden_states)
263
+ hidden_states = self.fc2(hidden_states)
264
+ return hidden_states
265
+
266
+
267
+ class Siglip2EncoderLayer(nn.Module):
268
+ def __init__(self, config: Siglip2NavitConfig):
269
+ super().__init__()
270
+ self.embed_dim = config.hidden_size
271
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
272
+ self.self_attn = Siglip2Attention(config)
273
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
274
+ self.mlp = Siglip2MLP(config)
275
+
276
+ def forward(
277
+ self,
278
+ hidden_states: torch.Tensor,
279
+ cu_seqlens: torch.Tensor,
280
+ position_embeddings: torch.Tensor
281
+ ) -> tuple[torch.FloatTensor]:
282
+ """
283
+ Args:
284
+ hidden_states (`torch.FloatTensor`):
285
+ Input to the layer of shape `(batch, seq_len, embed_dim)`.
286
+ attention_mask (`torch.FloatTensor`):
287
+ Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
288
+ output_attentions (`bool`, *optional*, defaults to `False`):
289
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
290
+ returned tensors for more detail.
291
+ """
292
+ residual = hidden_states
293
+
294
+ hidden_states = self.layer_norm1(hidden_states)
295
+ hidden_states = self.self_attn(
296
+ hidden_states=hidden_states,
297
+ cu_seqlens=cu_seqlens,
298
+ position_embeddings=position_embeddings
299
+ )
300
+ hidden_states = residual + hidden_states
301
+
302
+ residual = hidden_states
303
+ hidden_states = self.layer_norm2(hidden_states)
304
+ hidden_states = self.mlp(hidden_states)
305
+ hidden_states = residual + hidden_states
306
+
307
+ return hidden_states
308
+
309
+ class Siglip2Encoder(nn.Module):
310
+ """
311
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
312
+ [`Siglip2EncoderLayer`].
313
+
314
+ Args:
315
+ config: Siglip2NavitConfig
316
+ """
317
+
318
+ def __init__(self, config: Siglip2NavitConfig):
319
+ super().__init__()
320
+ self.config = config
321
+ self.layers = nn.ModuleList([Siglip2EncoderLayer(config) for _ in range(config.num_hidden_layers)])
322
+ self.gradient_checkpointing = False
323
+
324
+ self.rotary_pos_emb = VisionRotaryEmbedding(config.hidden_size // config.num_attention_heads // 2)
325
+ self.patch_size = config.patch_size
326
+ self.hidden_stride = config.hidden_stride
327
+ self.window_size = config.window_size
328
+ self.spatial_merge_unit = config.hidden_stride * config.hidden_stride
329
+ self.fullatt_block_indexes = None if config.fullatt_block_indexes is None else [int(i) for i in config.fullatt_block_indexes.split('|')]
330
+
331
+
332
+ # copied from qwen2.5_vl
333
+ def rot_pos_emb(self, grid_thw):
334
+ pos_ids = []
335
+ for t, h, w in grid_thw:
336
+ hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
337
+ hpos_ids = hpos_ids.reshape(
338
+ h // self.hidden_stride,
339
+ self.hidden_stride,
340
+ w // self.hidden_stride,
341
+ self.hidden_stride,
342
+ )
343
+ hpos_ids = hpos_ids.permute(0, 2, 1, 3)
344
+ hpos_ids = hpos_ids.flatten()
345
+
346
+ wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
347
+ wpos_ids = wpos_ids.reshape(
348
+ h // self.hidden_stride,
349
+ self.hidden_stride,
350
+ w // self.hidden_stride,
351
+ self.hidden_stride,
352
+ )
353
+ wpos_ids = wpos_ids.permute(0, 2, 1, 3)
354
+ wpos_ids = wpos_ids.flatten()
355
+ pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
356
+ pos_ids = torch.cat(pos_ids, dim=0)
357
+ max_grid_size = grid_thw[:, 1:].max()
358
+ rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
359
+ rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
360
+ return rotary_pos_emb
361
+
362
+ def get_window_index(self, grid_thw):
363
+ window_index: list = []
364
+ cu_window_seqlens: list = [0]
365
+ window_index_id = 0
366
+ vit_merger_window_size = self.window_size // self.hidden_stride // self.patch_size # patch (after merge) number in each window
367
+
368
+ for grid_t, grid_h, grid_w in grid_thw:
369
+ llm_grid_h, llm_grid_w = (
370
+ grid_h // self.hidden_stride, # number of patch after merge
371
+ grid_w // self.hidden_stride,
372
+ )
373
+ index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w)
374
+ pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
375
+ pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
376
+ num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
377
+ num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
378
+ index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
379
+ index_padded = index_padded.reshape(
380
+ grid_t,
381
+ num_windows_h,
382
+ vit_merger_window_size,
383
+ num_windows_w,
384
+ vit_merger_window_size,
385
+ )
386
+ index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
387
+ grid_t,
388
+ num_windows_h * num_windows_w,
389
+ vit_merger_window_size,
390
+ vit_merger_window_size,
391
+ )
392
+ seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
393
+ index_padded = index_padded.reshape(-1)
394
+ index_new = index_padded[index_padded != -100]
395
+ window_index.append(index_new + window_index_id)
396
+ cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1]
397
+ cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
398
+ window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
399
+ window_index = torch.cat(window_index, dim=0)
400
+
401
+ return window_index, cu_window_seqlens
402
+
403
+ # Ignore copy
404
+ def forward(
405
+ self,
406
+ inputs_embeds,
407
+ grid_thws: torch.Tensor,
408
+ output_hidden_states: bool = False,
409
+ ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]:
410
+ r"""
411
+ Args:
412
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
413
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
414
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
415
+ than the model's internal embedding lookup matrix.
416
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
417
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
418
+
419
+ - 1 for tokens that are **not masked**,
420
+ - 0 for tokens that are **masked**.
421
+
422
+ [What are attention masks?](../glossary#attention-mask)
423
+ output_attentions (`bool`, *optional*):
424
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
425
+ returned tensors for more detail.
426
+ output_hidden_states (`bool`, *optional*):
427
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
428
+ for more detail.
429
+ return_dict (`bool`, *optional*):
430
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
431
+ """
432
+
433
+ rotary_pos_emb = self.rot_pos_emb(grid_thws)
434
+ window_index, cu_window_seqlens = self.get_window_index(grid_thws)
435
+ cu_window_seqlens = torch.tensor(
436
+ cu_window_seqlens,
437
+ device=inputs_embeds.device,
438
+ dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32,
439
+ )
440
+ cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
441
+
442
+ seq_len, _ = inputs_embeds.size()
443
+ inputs_embeds = inputs_embeds.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
444
+ inputs_embeds = inputs_embeds[window_index, :, :]
445
+ inputs_embeds = inputs_embeds.reshape(seq_len, -1)
446
+ rotary_pos_emb = rotary_pos_emb.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
447
+ rotary_pos_emb = rotary_pos_emb[window_index, :, :]
448
+ rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
449
+ emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
450
+ position_embeddings = (emb.cos(), emb.sin())
451
+
452
+ cu_seqlens = torch.repeat_interleave(grid_thws[:, 1] * grid_thws[:, 2], grid_thws[:, 0]).cumsum(
453
+ dim=0,
454
+ # Select dtype based on the following factors:
455
+ # - FA2 requires that cu_seqlens_q must have dtype int32
456
+ # - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
457
+ # See https://github.com/huggingface/transformers/pull/34852 for more information
458
+ dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32,
459
+ )
460
+ cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
461
+
462
+ reverse_indices = torch.argsort(window_index)
463
+ encoder_states = () if output_hidden_states else None
464
+
465
+ hidden_states = inputs_embeds
466
+ for index, block in enumerate(self.layers):
467
+ if self.fullatt_block_indexes is None or index in self.fullatt_block_indexes:
468
+ cu_seqlens_tmp = cu_seqlens
469
+ else:
470
+ cu_seqlens_tmp = cu_window_seqlens
471
+ if self.gradient_checkpointing and self.training:
472
+ hidden_states = self._gradient_checkpointing_func(block.__call__, hidden_states, cu_seqlens_tmp, position_embeddings)
473
+ else:
474
+ hidden_states = block(hidden_states, cu_seqlens_tmp, position_embeddings)
475
+ if output_hidden_states:
476
+ hidden_states_ = hidden_states.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
477
+ encoder_states += (hidden_states_[reverse_indices, :].reshape(seq_len, -1),)
478
+ # tokens = self.post_trunk_norm(tokens)
479
+ hidden_states = hidden_states.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
480
+ hidden_states = hidden_states[reverse_indices, :].reshape(seq_len, -1)
481
+
482
+ return hidden_states, encoder_states
483
+
484
+ class Siglip2VisionTransformer(nn.Module):
485
+ def __init__(self, config: Siglip2NavitConfig):
486
+ super().__init__()
487
+ self.config = config
488
+ embed_dim = config.hidden_size
489
+
490
+ self.embeddings = Siglip2VisionEmbeddings(config)
491
+ self.encoder = Siglip2Encoder(config)
492
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
493
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
494
+
495
+ def forward(
496
+ self,
497
+ pixel_values: torch.FloatTensor,
498
+ grid_thws: torch.LongTensor,
499
+ output_hidden_states: Optional[bool] = True,
500
+ return_dict: Optional[bool] = True,
501
+ ) -> Union[
502
+ Tuple[torch.Tensor],
503
+ Tuple[torch.Tensor, Tuple[torch.Tensor, ...]],
504
+ BaseModelOutputWithNoAttention,
505
+ ]:
506
+ r"""
507
+ spatial_shapes (`torch.LongTensor` of shape `(batch_size, 2)`):
508
+ Tensor containing the spatial dimensions (height, width) of the input images.
509
+ """
510
+ # output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
511
+ # output_hidden_states = (
512
+ # output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
513
+ # )
514
+
515
+ hidden_states = self.embeddings(pixel_values, grid_thws)
516
+
517
+ last_hidden_state, hidden_states = self.encoder(hidden_states, grid_thws, output_hidden_states)
518
+ last_hidden_state = self.post_layernorm(last_hidden_state)
519
+
520
+ if not return_dict:
521
+ output = (last_hidden_state,)
522
+ output += (hidden_states,) if output_hidden_states else ()
523
+ return output
524
+
525
+ return BaseModelOutputWithNoAttention(
526
+ last_hidden_state=last_hidden_state,
527
+ hidden_states=hidden_states
528
+ )
529
+
530
+ class Siglip2PreTrainedModel(PreTrainedModel):
531
+ config_class = Siglip2NavitConfig
532
+ base_model_prefix = "siglip2_navit"
533
+ supports_gradient_checkpointing = True
534
+
535
+ _no_split_modules = [
536
+ "Siglip2VisionEmbeddings",
537
+ "Siglip2EncoderLayer",
538
+ ]
539
+ _supports_flash_attn_2 = True
540
+ _supports_sdpa = False
541
+ _supports_flex_attn = False
542
+ _supports_attention_backend = True
543
+
544
+
545
+ class Siglip2NavitModel(Siglip2PreTrainedModel):
546
+ config_class = Siglip2NavitConfig
547
+ main_input_name = "pixel_values"
548
+
549
+ def __init__(self, config: Siglip2NavitConfig):
550
+ super().__init__(config)
551
+
552
+ self.vision_model = Siglip2VisionTransformer(config)
553
+
554
+ def get_input_embeddings(self) -> nn.Module:
555
+ return self.vision_model.embeddings.patch_embedding
556
+
557
+ def forward(
558
+ self,
559
+ pixel_values: torch.FloatTensor,
560
+ grid_thws: torch.LongTensor,
561
+ output_hidden_states: Optional[bool] = None,
562
+ return_dict: Optional[bool] = None,
563
+ ) -> Union[
564
+ Tuple[torch.Tensor],
565
+ Tuple[torch.Tensor, Tuple[torch.Tensor, ...]],
566
+ BaseModelOutputWithNoAttention,
567
+ ]:
568
+
569
+ if output_hidden_states is None:
570
+ output_hidden_states = self.config.output_hidden_states
571
+ if return_dict is None:
572
+ return_dict = self.config.use_return_dict
573
+
574
+ return self.vision_model(
575
+ pixel_values=pixel_values,
576
+ grid_thws=grid_thws,
577
+ output_hidden_states=output_hidden_states,
578
+ return_dict=return_dict,
579
+ )
580
+
581
+ class VisualEmbedding(torch.nn.Embedding):
582
+ """
583
+ A visual embedding layer that can handle both discrete token IDs (long) and continuous
584
+ soft-token probabilities (float).
585
+ """
586
+
587
+ def forward(self, visual_tokens: Tensor) -> Tensor:
588
+ if visual_tokens.dtype in [torch.int8, torch.int16, torch.int32, torch.int64, torch.long]:
589
+ return super().forward(visual_tokens)
590
+ # Handle soft tokens (probabilities) by matrix multiplication with the embedding weight
591
+ return torch.matmul(visual_tokens, self.weight)
592
+
593
+
594
+ class VisualTokenizer(torch.nn.Module):
595
+ """
596
+ Tokenizes images or videos into a sequence of continuous visual tokens.
597
+ """
598
+
599
+ def __init__(self, vit, visual_vocab_size, image_processor_name_or_path, *args, **kwargs):
600
+ super().__init__(*args, **kwargs)
601
+ self.vit = vit
602
+ self.image_processor = AutoImageProcessor.from_pretrained(image_processor_name_or_path, do_center_crop=False)
603
+ head_dim = visual_vocab_size - len(INDICATOR_IDS)
604
+ self.head = torch.nn.Sequential(
605
+ torch.nn.Linear(self.vit.config.hidden_size * self.vit.config.hidden_stride ** 2, head_dim, bias=False),
606
+ torch.nn.LayerNorm(head_dim)
607
+ )
608
+
609
+ def _encode(self, pixel_values, grid_thws):
610
+ output = self.vit(pixel_values, grid_thws, output_hidden_states=True, return_dict=True)
611
+ features = output.hidden_states[-1]
612
+ seq_len, _ = features.shape
613
+ features = features.reshape(seq_len // (self.vit.config.hidden_stride ** 2), -1)
614
+ return features
615
+
616
+ # Adapted from qwen2_vl
617
+ @staticmethod
618
+ def smart_resize(
619
+ height: int, width: int, factor: int = 28, min_pixels: int = 448 * 448, max_pixels: int = 1344 * 1792
620
+ ):
621
+ """Rescales the image so that the following conditions are met:
622
+ 1. Both dimensions are divisible by 'factor'.
623
+ 2. The total number of pixels is within ['min_pixels', 'max_pixels'].
624
+ 3. The aspect ratio is maintained as closely as possible.
625
+ """
626
+ if height < factor or width < factor:
627
+ if height < width:
628
+ width = round(factor / height * width)
629
+ height = factor
630
+ else:
631
+ height = round(factor / width * height)
632
+ width = factor
633
+
634
+ elif max(height, width) / min(height, width) > 200:
635
+ if height > width:
636
+ height = 200 * width
637
+ else:
638
+ width = 200 * height
639
+
640
+ h_bar = round(height / factor) * factor
641
+ w_bar = round(width / factor) * factor
642
+ if h_bar * w_bar > max_pixels:
643
+ beta = math.sqrt((height * width) / max_pixels)
644
+ h_bar = math.floor(height / beta / factor) * factor
645
+ w_bar = math.floor(width / beta / factor) * factor
646
+ elif h_bar * w_bar < min_pixels:
647
+ beta = math.sqrt(min_pixels / (height * width))
648
+ h_bar = math.ceil(height * beta / factor) * factor
649
+ w_bar = math.ceil(width * beta / factor) * factor
650
+ return h_bar, w_bar
651
+
652
+ def preprocess(
653
+ self,
654
+ image: Optional[PIL.Image.Image] = None,
655
+ video: Optional[List[PIL.Image.Image]] = None,
656
+ min_pixels: Optional[int] = None,
657
+ max_pixels: Optional[int] = None
658
+ ):
659
+ patch_size = self.vit.config.patch_size
660
+ temporal_patch_size = self.vit.config.temporal_patch_size
661
+ hidden_stride = self.vit.config.hidden_stride
662
+ assert (image is None) ^ (video is None), "Invalid input: expect either image or video"
663
+ if image is not None:
664
+ images = [image]
665
+ else:
666
+ images = video
667
+ images = [image.convert("RGB") if image.mode != 'RGB' else image for image in images]
668
+ width, height = images[0].size
669
+ processed_images = []
670
+ for image in images:
671
+ resized_height, resized_width = self.smart_resize(
672
+ height,
673
+ width,
674
+ factor=patch_size * hidden_stride,
675
+ min_pixels=min_pixels,
676
+ max_pixels=max_pixels,
677
+ )
678
+ new_size = dict(height=resized_height, width=resized_width)
679
+ new_image = self.image_processor.preprocess(image, size=new_size, return_tensors="np")['pixel_values'][0]
680
+ processed_images.append(new_image)
681
+
682
+ patches = np.array(processed_images)
683
+ if patches.shape[0] % temporal_patch_size != 0:
684
+ repeats = np.repeat(patches[-1][np.newaxis], temporal_patch_size - 1, axis=0)
685
+ patches = np.concatenate([patches, repeats], axis=0)
686
+ channel = patches.shape[1]
687
+ grid_t = patches.shape[0] // temporal_patch_size
688
+ grid_h, grid_w = resized_height // patch_size, resized_width // patch_size
689
+ grid_thw = torch.tensor([[grid_t, grid_h, grid_w]])
690
+
691
+ patches = patches.reshape(
692
+ grid_t, temporal_patch_size, channel,
693
+ grid_h // hidden_stride, hidden_stride, patch_size,
694
+ grid_w // hidden_stride, hidden_stride, patch_size,
695
+ )
696
+ patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8)
697
+ flatten_patches = patches.reshape(
698
+ grid_t * grid_h * grid_w, channel * temporal_patch_size * patch_size * patch_size
699
+ )
700
+ flatten_patches = torch.tensor(flatten_patches)
701
+
702
+ return flatten_patches, grid_thw
703
+
704
+ def forward(
705
+ self, pixel_values, grid_thws
706
+ ) -> torch.Tensor: # [BatchSize, ImageShape] -> [BatchSize, #Token, VocabSize]
707
+ features = self._encode(pixel_values, grid_thws)
708
+ logits = self.head(features)
709
+ tokens = torch.softmax(logits, dim=-1, dtype=torch.float32).to(logits.dtype)
710
+
711
+ token_len, _ = tokens.shape
712
+ padding_tensor = torch.zeros(size=(token_len, len(INDICATOR_IDS)),
713
+ dtype=tokens.dtype,
714
+ device=tokens.device,
715
+ layout=tokens.layout,
716
+ requires_grad=False)
717
+ tokens = torch.cat((tokens, padding_tensor), dim=1)
718
+ return tokens
719
+
720
+
721
+ class OvisPreTrainedModel(PreTrainedModel):
722
+ config_class = Ovis2_5_Config
723
+ base_model_prefix = "ovis2_5"
724
+
725
+
726
+ class Ovis2_5(OvisPreTrainedModel):
727
+ _supports_flash_attn_2 = True
728
+
729
+ def __init__(self, config: Ovis2_5_Config, *inputs, **kwargs):
730
+ super().__init__(config, *inputs, **kwargs)
731
+
732
+ self.llm = AutoModelForCausalLM.from_config(self.config.llm_config)
733
+ assert self.config.hidden_size == self.llm.config.hidden_size, "hidden size mismatch"
734
+ self.text_tokenizer = AutoTokenizer.from_pretrained(self.config.name_or_path)
735
+ self.visual_tokenizer = VisualTokenizer(vit=AutoModel.from_config(self.config.vit_config),
736
+ visual_vocab_size=self.config.visual_vocab_size,
737
+ image_processor_name_or_path=self.config.name_or_path)
738
+
739
+ self.vte = VisualEmbedding(self.config.visual_vocab_size, self.config.hidden_size,
740
+ device=self.visual_tokenizer.vit.device, dtype=self.visual_tokenizer.vit.dtype)
741
+ indicator_token_indices = torch.arange(
742
+ self.config.visual_vocab_size - len(INDICATOR_IDS),
743
+ self.config.visual_vocab_size,
744
+ dtype=torch.long
745
+ )
746
+ self.register_buffer("indicator_token_indices", indicator_token_indices, persistent=False)
747
+
748
+ def _merge_modules(modules_list: tuple):
749
+ merged_modules = []
750
+ for modules in modules_list:
751
+ merged_modules.extend(modules if modules else [])
752
+ return merged_modules
753
+
754
+ # Standard model configurations for parallelism and device placement
755
+ self._no_split_modules = _merge_modules(
756
+ (self.llm._no_split_modules, self.visual_tokenizer.vit._no_split_modules))
757
+ self._skip_keys_device_placement = self.llm._skip_keys_device_placement
758
+ self._keep_in_fp32_modules = _merge_modules(
759
+ (self.llm._keep_in_fp32_modules, self.visual_tokenizer.vit._keep_in_fp32_modules))
760
+ self.is_parallelizable = all((self.llm.is_parallelizable, self.visual_tokenizer.vit.is_parallelizable))
761
+ self.supports_gradient_checkpointing = True
762
+
763
+ def tie_weights(self):
764
+ self.llm.tie_weights()
765
+
766
+ def get_wte(self):
767
+ return self.llm.get_input_embeddings()
768
+
769
+ def forward(
770
+ self,
771
+ input_ids: torch.Tensor,
772
+ attention_mask: torch.Tensor,
773
+ pixel_values: Optional[torch.Tensor],
774
+ grid_thws: Optional[torch.Tensor],
775
+ labels: Optional[torch.Tensor] = None,
776
+ **kwargs
777
+ ):
778
+ inputs_embeds = self.merge_multimodal(
779
+ input_ids=input_ids,
780
+ pixel_values=pixel_values,
781
+ grid_thws=grid_thws,
782
+ )
783
+ return self.llm(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, **kwargs)
784
+
785
+ def merge_multimodal(
786
+ self,
787
+ input_ids: torch.Tensor,
788
+ pixel_values: Optional[torch.Tensor],
789
+ grid_thws: Optional[torch.Tensor],
790
+ ):
791
+ placeholder_token_mask = torch.lt(input_ids, 0)
792
+ multimodal_embeds = self.get_wte()(torch.masked_fill(input_ids, placeholder_token_mask, 0))
793
+
794
+ if pixel_values is not None:
795
+ visual_indicator_embeds = self.vte(self.indicator_token_indices).to(
796
+ dtype=multimodal_embeds.dtype, device=multimodal_embeds.device
797
+ )
798
+ visual_tokens = self.visual_tokenizer(pixel_values, grid_thws)
799
+ visual_embeds = self.vte(visual_tokens).to(dtype=multimodal_embeds.dtype, device=multimodal_embeds.device)
800
+
801
+ for i, indicator_id in enumerate(INDICATOR_IDS):
802
+ multimodal_embeds[input_ids == indicator_id] = visual_indicator_embeds[i]
803
+ multimodal_embeds[input_ids == VISUAL_ATOM_ID] = visual_embeds
804
+
805
+ return multimodal_embeds
806
+
807
+ def _merge_inputs(
808
+ self, raw_input_ids, placeholder_id, grid_thws, indicator_begin_id, indicator_end_id
809
+ ):
810
+ input_ids = []
811
+ prev_index = 0
812
+ placeholder_indexes = [i for i, v in enumerate(raw_input_ids) if v == placeholder_id]
813
+ for placeholder_index, grid_thw in zip(placeholder_indexes, grid_thws):
814
+ input_ids.extend(raw_input_ids[prev_index:placeholder_index])
815
+ num_image_atoms = grid_thw.prod().item()
816
+ num_image_atoms //= self.visual_tokenizer.vit.config.hidden_stride ** 2
817
+ num_image_atoms //= self.visual_tokenizer.vit.config.temporal_patch_size
818
+ input_ids.extend([indicator_begin_id] + [VISUAL_ATOM_ID] * num_image_atoms + [indicator_end_id])
819
+ prev_index = placeholder_index + 1
820
+ input_ids.extend(raw_input_ids[prev_index:])
821
+ return input_ids
822
+
823
+ def _tokenize_with_visual_placeholder(self, text):
824
+ placeholder = VIDEO_PLACEHOLDER if VIDEO_PLACEHOLDER in text else IMAGE_PLACEHOLDER
825
+ placeholder_id = VIDEO_PLACEHOLDER_ID if VIDEO_PLACEHOLDER in text else IMAGE_PLACEHOLDER_ID
826
+ chunks = [self.text_tokenizer(chunk, add_special_tokens=False).input_ids for chunk in text.split(placeholder)]
827
+ input_ids = chunks[0]
828
+ for chunk in chunks[1:]:
829
+ input_ids.append(placeholder_id)
830
+ input_ids.extend(chunk)
831
+ return input_ids
832
+
833
+ def preprocess_inputs(
834
+ self,
835
+ messages: List[Union[str, Dict]],
836
+ min_pixels=448 * 448,
837
+ max_pixels=1344 * 1792,
838
+ add_generation_prompt=True,
839
+ enable_thinking=False
840
+ ):
841
+ text = self.text_tokenizer.apply_chat_template(
842
+ messages,
843
+ tokenize=False,
844
+ add_generation_prompt=add_generation_prompt,
845
+ enable_thinking=enable_thinking
846
+ )
847
+ input_ids = self._tokenize_with_visual_placeholder(text)
848
+ images = []
849
+ videos = []
850
+ for message in messages:
851
+ content = message["content"]
852
+ if isinstance(content, list):
853
+ images.extend([item["image"] for item in content if item.get("image") is not None])
854
+ videos.extend([item["video"] for item in content if item.get("video") is not None])
855
+ if images and videos:
856
+ raise ValueError(
857
+ "Multiple visual input data types detected (both image and video provided). "
858
+ "This model supports only one type of visual input data at a time. "
859
+ "Please provide either image or video, but not both."
860
+ )
861
+
862
+ pixel_values, grid_thws = None, None
863
+ if images:
864
+ pixel_values, grid_thws = zip(
865
+ *(self.visual_tokenizer.preprocess(image=image, min_pixels=min_pixels, max_pixels=max_pixels)
866
+ for image in images)
867
+ )
868
+ input_ids = self._merge_inputs(
869
+ input_ids, IMAGE_PLACEHOLDER_ID, grid_thws, INDICATOR_IDS[0], INDICATOR_IDS[1]
870
+ )
871
+ pixel_values = torch.cat(pixel_values, dim=0)
872
+ grid_thws = torch.cat(grid_thws, dim=0)
873
+ elif videos:
874
+ assert len(videos) == 1, "only support single video"
875
+ pixel_values, grid_thws = self.visual_tokenizer.preprocess(
876
+ video=videos[0], min_pixels=min_pixels, max_pixels=max_pixels
877
+ )
878
+ input_ids = self._merge_inputs(
879
+ input_ids, VIDEO_PLACEHOLDER_ID, grid_thws, INDICATOR_IDS[2], INDICATOR_IDS[3]
880
+ )
881
+
882
+ input_ids = torch.tensor(input_ids, dtype=torch.long).unsqueeze(0)
883
+
884
+ return input_ids, pixel_values, grid_thws
885
+
886
+ def generate(
887
+ self,
888
+ inputs: Optional[torch.Tensor] = None,
889
+ **kwargs,
890
+ ) -> Union[GenerateOutput, torch.LongTensor]:
891
+ attention_mask = torch.ne(inputs, self.text_tokenizer.pad_token_id).to(device=inputs.device)
892
+ inputs_embeds = self.merge_multimodal(
893
+ input_ids=inputs,
894
+ pixel_values=kwargs.pop('pixel_values', None),
895
+ grid_thws=kwargs.pop('grid_thws', None)
896
+ )
897
+ return self.llm.generate(inputs=None, inputs_embeds=inputs_embeds, attention_mask=attention_mask, **kwargs)
898
+
899
+
900
+ AutoConfig.register('siglip2_navit', Siglip2NavitConfig)
901
+ AutoModel.register(Siglip2NavitConfig, Siglip2NavitModel)
902
+ AutoConfig.register("ovis2_5", Ovis2_5_Config)
903
+ AutoModelForCausalLM.register(Ovis2_5_Config, Ovis2_5)
preprocessor_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "SiglipImageProcessor",
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "processor_class": "SiglipProcessor",
18
+ "resample": 2,
19
+ "rescale_factor": 0.00392156862745098,
20
+ "size": {
21
+ "height": 512,
22
+ "width": 512
23
+ }
24
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "chat_template": "{%- for message in messages %}{{- '<|im_start|>' + message.role + '\n'}}{%- if message.role == 'system' or message.role == 'user' %}{%- if message.content is string %}{{- message.content | replace('<image>', '') | replace('<video>', '') }}{%- else %}{%- for item in message.content %}{%- if item.type == 'text' and 'text' in item %}{{- item.text | replace('<image>', '') | replace('<video>', '') }}{%- elif item.type == 'image' and 'image' in item %}{{- '<image>'}}{%- elif item.type == 'video' and 'video' in item %}{{- '<video>'}}{%- else %}{{- raise_exception('Invalid content type. Supported types for system and user are text, image, video.')}}{%- endif %}{%- if not loop.last %}{{- '\n'}}{%- endif %}{%- endfor %}{%- endif %}{%- elif message.role == 'assistant' %}{%- set content = '' %}{%- if message.content is string %}{%- set content = message.content | replace('<image>', '') | replace('<video>', '') %}{%- else %}{%- for item in message.content %}{%- if item.type == 'text' and 'text' in item %}{%- set content = content ~ (item.text | replace('<image>', '') | replace('<video>', '')) %}{%- else %}{{- raise_exception('Invalid content type. Supported type for assistant is text.')}}{%- endif %}{%- endfor %}{%- endif %}{%- set content = content.split('</think>')[-1].lstrip('\n') %}{{- content }}{%- else %}{{- raise_exception('Invalid role. Supported roles are system, user, assistant.')}}{%- endif %}{{- '<|im_end|>\n'}}{%- endfor %}{%- if add_generation_prompt %}{{- '<|im_start|>assistant\n' }}{%- if enable_thinking is defined and enable_thinking is false %}{{- '<think>\n\n</think>\n\n' }}{%- endif %}{%- endif %}",
231
+ "clean_up_tokenization_spaces": false,
232
+ "eos_token": "<|im_end|>",
233
+ "errors": "replace",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 131072,
236
+ "pad_token": "<|endoftext|>",
237
+ "split_special_tokens": false,
238
+ "tokenizer_class": "Qwen2Tokenizer",
239
+ "unk_token": null
240
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff