Ovis-U1-3B / modeling_aimv2.py
Flourish's picture
Upload folder using huggingface_hub
f304131 verified
# adapted from https://huggingface.co/apple/aimv2-huge-patch14-448 (modification: add gradient checkpoint support)
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import functional as F
from transformers.modeling_outputs import BaseModelOutputWithNoAttention
from transformers.modeling_utils import PreTrainedModel
from flash_attn.layers.rotary import apply_rotary_emb
from flash_attn import flash_attn_varlen_func
from .configuration_aimv2 import AIMv2Config
__all__ = ["AIMv2Model"]
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(dim))
self.eps = eps
def forward(self, x: torch.Tensor) -> torch.Tensor:
output = self._norm(x.float()).type_as(x)
return output * self.weight
def extra_repr(self) -> str:
return f"{tuple(self.weight.shape)}, eps={self.eps}"
def _norm(self, x: torch.Tensor) -> torch.Tensor:
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
class AIMv2SwiGLUFFN(nn.Module):
def __init__(self, config: AIMv2Config):
super().__init__()
hidden_features = config.intermediate_size
in_features = config.hidden_size
bias = config.use_bias
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.silu(self.fc1(x)) * self.fc3(x)
x = self.fc2(x)
return x
# copied from qwen2.5-vl
class VisionRotaryEmbedding(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0) -> None:
super().__init__()
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward(self, seqlen: int) -> torch.Tensor:
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
freqs = torch.outer(seq, self.inv_freq)
return freqs
# Note: in qwen2-vl and qwen2.5-vl, 3d convolution is used.
class AIMv2PatchEmbed(nn.Module):
def __init__(self, config: AIMv2Config):
super().__init__()
self.config = config
self.proj = nn.Conv2d(
config.num_channels,
config.hidden_size,
kernel_size=(config.patch_size, config.patch_size),
stride=(config.patch_size, config.patch_size),
)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.view(-1, self.config.num_channels * self.config.temporal_patch_size, self.config.patch_size, self.config.patch_size)
x = self.proj(x).view(-1, self.config.hidden_size) #.flatten(2).transpose(1, 2) # token_len x hidden_size
x = self.norm(x)
return x
class AIMv2ViTPreprocessor(nn.Module):
def __init__(self, config: AIMv2Config):
super().__init__()
num_patches = (config.image_size // config.patch_size) ** 2
self.patchifier = AIMv2PatchEmbed(config)
self.preserve_original_pe = config.preserve_original_pe
self.hidden_stride = config.hidden_stride
if self.preserve_original_pe:
self.interpolate_pe_method = config.interpolate_pe_method
self.pos_embed = nn.Parameter(torch.zeros((1, num_patches, config.hidden_size)))
def forward(self, x: torch.Tensor, grid_thws: Optional[torch.Tensor] = None) -> torch.Tensor:
tokens = self.patchifier(x)
if self.preserve_original_pe:
assert grid_thws is not None
pos_embed_new = torch.zeros_like(tokens)
if self.interpolate_pe_method == 'one_dim':
pos_embed = self.pos_embed.transpose(1,2).to(tokens.device)
elif self.interpolate_pe_method == 'two_dim':
ori_h = ori_w = int(self.pos_embed.shape[1] ** 0.5)
pos_embed = self.pos_embed.reshape(1, ori_h, ori_w, -1).permute(0,3,1,2)
else:
raise TypeError("The interpolation method for pe should be one_dim, two_dim.")
cnt = 0
for t, h, w in grid_thws:
num_patches = h * w
thw = t * h * w
if self.interpolate_pe_method == 'one_dim':
pe = F.interpolate(pos_embed, size=num_patches, mode='linear', align_corners=False).transpose(1,2)
elif self.interpolate_pe_method == 'two_dim':
# 1, 1024, 32, 32
pe = F.interpolate(pos_embed, size=(h,w), mode='bicubic', align_corners=False)
# 1, 1024, 1024
pe = pe.permute(0,2,3,1).reshape(1, h*w, -1)
# 1024, 1024
pe = pe[0].repeat(t,1)
# 1, 16, 2, 16, 2, 1024
pe = pe.reshape(t, h//self.hidden_stride, self.hidden_stride, w//self.hidden_stride, self.hidden_stride, -1)
# 1024, 1024
pe = pe.permute(0,1,3,2,4,5).reshape(thw,-1)
pos_embed_new[cnt:cnt+thw] = pe
cnt += thw
tokens = tokens + pos_embed_new
return tokens
# copied from qwen2.5-vl
def apply_rotary_pos_emb_flashatt(
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
cos = cos.chunk(2, dim=-1)[0].contiguous()
sin = sin.chunk(2, dim=-1)[0].contiguous()
q_embed = apply_rotary_emb(q.float(), cos.float(), sin.float()).type_as(q)
k_embed = apply_rotary_emb(k.float(), cos.float(), sin.float()).type_as(k)
return q_embed, k_embed
class AIMv2FlashAttention2(nn.Module):
def __init__(self, config: AIMv2Config) -> None:
super().__init__()
dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias)
self.proj = nn.Linear(dim, dim, bias=config.use_bias)
self.use_rope = not config.disable_rope
def forward(
self,
hidden_states: torch.Tensor,
cu_seqlens: torch.Tensor,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
) -> torch.Tensor:
seq_length = hidden_states.shape[0]
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
if self.use_rope:
cos, sin = position_embeddings
q, k = apply_rotary_pos_emb_flashatt(q.unsqueeze(0), k.unsqueeze(0), cos, sin)
q = q.squeeze(0)
k = k.squeeze(0)
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
seq_length, -1
)
attn_output = self.proj(attn_output)
return attn_output
class AIMv2Block(nn.Module):
def __init__(self, config: AIMv2Config):
super().__init__()
self.attn = AIMv2FlashAttention2(config)
self.norm_1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.mlp = AIMv2SwiGLUFFN(config)
self.norm_2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self, x: torch.Tensor, cu_seqlens: torch.Tensor, position_embeddings: torch.Tensor
) -> torch.Tensor:
x = x + self.attn(self.norm_1(x), cu_seqlens=cu_seqlens, position_embeddings=position_embeddings)
x = x + self.mlp(self.norm_2(x))
return x
class AIMv2Transformer(nn.Module):
def __init__(self, config: AIMv2Config):
super().__init__()
self.blocks = nn.ModuleList(
[AIMv2Block(config) for _ in range(config.num_hidden_layers)]
)
self.post_trunk_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
self.rotary_pos_emb = VisionRotaryEmbedding(config.hidden_size // config.num_attention_heads // 2)
self.hidden_stride = config.hidden_stride
self.patch_size = config.patch_size
self.window_size = config.window_size
self.spatial_merge_unit = config.hidden_stride * config.hidden_stride
self.fullatt_block_indexes = config.fullatt_block_indexes
# copied from qwen2.5_vl
def rot_pos_emb(self, grid_thw):
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
hpos_ids = hpos_ids.reshape(
h // self.hidden_stride,
self.hidden_stride,
w // self.hidden_stride,
self.hidden_stride,
)
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
hpos_ids = hpos_ids.flatten()
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(
h // self.hidden_stride,
self.hidden_stride,
w // self.hidden_stride,
self.hidden_stride,
)
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
wpos_ids = wpos_ids.flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb
def get_window_index(self, grid_thw):
window_index: list = []
cu_window_seqlens: list = [0]
window_index_id = 0
vit_merger_window_size = self.window_size // self.hidden_stride // self.patch_size # patch (after merge) number in each window
for grid_t, grid_h, grid_w in grid_thw:
llm_grid_h, llm_grid_w = (
grid_h // self.hidden_stride, # number of patch after merge
grid_w // self.hidden_stride,
)
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w)
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
index_padded = index_padded.reshape(
grid_t,
num_windows_h,
vit_merger_window_size,
num_windows_w,
vit_merger_window_size,
)
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
grid_t,
num_windows_h * num_windows_w,
vit_merger_window_size,
vit_merger_window_size,
)
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
index_padded = index_padded.reshape(-1)
index_new = index_padded[index_padded != -100]
window_index.append(index_new + window_index_id)
cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1]
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
window_index = torch.cat(window_index, dim=0)
return window_index, cu_window_seqlens
def forward(
self,
tokens: torch.Tensor,
grid_thws: torch.Tensor,
output_hidden_states: bool = False,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]:
# RoPE, modified from qwen2.5_vl
rotary_pos_emb = self.rot_pos_emb(grid_thws)
window_index, cu_window_seqlens = self.get_window_index(grid_thws)
cu_window_seqlens = torch.tensor(
cu_window_seqlens,
device=tokens.device,
dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32,
)
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
seq_len, _ = tokens.size()
tokens = tokens.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
tokens = tokens[window_index, :, :]
tokens = tokens.reshape(seq_len, -1)
rotary_pos_emb = rotary_pos_emb.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
rotary_pos_emb = rotary_pos_emb[window_index, :, :]
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
position_embeddings = (emb.cos(), emb.sin())
cu_seqlens = torch.repeat_interleave(grid_thws[:, 1] * grid_thws[:, 2], grid_thws[:, 0]).cumsum(
dim=0,
# Select dtype based on the following factors:
# - FA2 requires that cu_seqlens_q must have dtype int32
# - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
# See https://github.com/huggingface/transformers/pull/34852 for more information
dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32,
)
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
reverse_indices = torch.argsort(window_index)
hidden_states = () if output_hidden_states else None
for index, block in enumerate(self.blocks):
if self.fullatt_block_indexes is None or index in self.fullatt_block_indexes:
cu_seqlens_tmp = cu_seqlens
else:
cu_seqlens_tmp = cu_window_seqlens
if self.gradient_checkpointing and self.training:
tokens = self._gradient_checkpointing_func(block.__call__, tokens, cu_seqlens_tmp, position_embeddings)
else:
tokens = block(tokens, cu_seqlens_tmp, position_embeddings)
if output_hidden_states:
tokens_ = tokens.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
hidden_states += (tokens_[reverse_indices,:].reshape(seq_len, -1),)
tokens = self.post_trunk_norm(tokens)
tokens = tokens.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
tokens = tokens[reverse_indices,:].reshape(seq_len, -1)
return tokens, hidden_states
class AIMv2PretrainedModel(PreTrainedModel):
config_class = AIMv2Config
base_model_prefix = "aimv2"
supports_gradient_checkpointing = True
main_input_name = "pixel_values"
_no_split_modules = ["AIMv2ViTPreprocessor", "AIMv2Block"]
_supports_sdpa = True
class AIMv2Model(AIMv2PretrainedModel):
def __init__(self, config: AIMv2Config):
super().__init__(config)
self.preprocessor = AIMv2ViTPreprocessor(config)
self.trunk = AIMv2Transformer(config)
def forward(
self,
pixel_values: torch.Tensor,
grid_thws: torch.Tensor,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[
Tuple[torch.Tensor],
Tuple[torch.Tensor, Tuple[torch.Tensor, ...]],
BaseModelOutputWithNoAttention,
]:
if output_hidden_states is None:
output_hidden_states = self.config.output_hidden_states
if return_dict is None:
return_dict = self.config.use_return_dict
x = self.preprocessor(pixel_values, grid_thws=grid_thws)
x, hidden_states = self.trunk(
x, grid_thws=grid_thws, output_hidden_states=output_hidden_states
)
if not return_dict:
res = (x,)
res += (hidden_states,) if output_hidden_states else ()
return res
return BaseModelOutputWithNoAttention(
last_hidden_state=x,
hidden_states=hidden_states,
)