|
|
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from transformers.modeling_outputs import BaseModelOutputWithNoAttention |
|
from transformers.modeling_utils import PreTrainedModel |
|
from flash_attn.layers.rotary import apply_rotary_emb |
|
from flash_attn import flash_attn_varlen_func |
|
|
|
from .configuration_aimv2 import AIMv2Config |
|
|
|
|
|
__all__ = ["AIMv2Model"] |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__(self, dim: int, eps: float = 1e-6): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
self.eps = eps |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
output = self._norm(x.float()).type_as(x) |
|
return output * self.weight |
|
|
|
def extra_repr(self) -> str: |
|
return f"{tuple(self.weight.shape)}, eps={self.eps}" |
|
|
|
def _norm(self, x: torch.Tensor) -> torch.Tensor: |
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
|
|
class AIMv2SwiGLUFFN(nn.Module): |
|
def __init__(self, config: AIMv2Config): |
|
super().__init__() |
|
hidden_features = config.intermediate_size |
|
in_features = config.hidden_size |
|
bias = config.use_bias |
|
|
|
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias) |
|
self.fc2 = nn.Linear(hidden_features, in_features, bias=bias) |
|
self.fc3 = nn.Linear(in_features, hidden_features, bias=bias) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = F.silu(self.fc1(x)) * self.fc3(x) |
|
x = self.fc2(x) |
|
return x |
|
|
|
|
|
|
|
class VisionRotaryEmbedding(nn.Module): |
|
def __init__(self, dim: int, theta: float = 10000.0) -> None: |
|
super().__init__() |
|
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
def forward(self, seqlen: int) -> torch.Tensor: |
|
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype) |
|
freqs = torch.outer(seq, self.inv_freq) |
|
return freqs |
|
|
|
|
|
class AIMv2PatchEmbed(nn.Module): |
|
def __init__(self, config: AIMv2Config): |
|
super().__init__() |
|
self.config = config |
|
self.proj = nn.Conv2d( |
|
config.num_channels, |
|
config.hidden_size, |
|
kernel_size=(config.patch_size, config.patch_size), |
|
stride=(config.patch_size, config.patch_size), |
|
) |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = x.view(-1, self.config.num_channels * self.config.temporal_patch_size, self.config.patch_size, self.config.patch_size) |
|
x = self.proj(x).view(-1, self.config.hidden_size) |
|
x = self.norm(x) |
|
return x |
|
|
|
class AIMv2ViTPreprocessor(nn.Module): |
|
def __init__(self, config: AIMv2Config): |
|
super().__init__() |
|
|
|
num_patches = (config.image_size // config.patch_size) ** 2 |
|
|
|
self.patchifier = AIMv2PatchEmbed(config) |
|
|
|
self.preserve_original_pe = config.preserve_original_pe |
|
self.hidden_stride = config.hidden_stride |
|
|
|
if self.preserve_original_pe: |
|
self.interpolate_pe_method = config.interpolate_pe_method |
|
self.pos_embed = nn.Parameter(torch.zeros((1, num_patches, config.hidden_size))) |
|
|
|
def forward(self, x: torch.Tensor, grid_thws: Optional[torch.Tensor] = None) -> torch.Tensor: |
|
tokens = self.patchifier(x) |
|
|
|
if self.preserve_original_pe: |
|
assert grid_thws is not None |
|
pos_embed_new = torch.zeros_like(tokens) |
|
if self.interpolate_pe_method == 'one_dim': |
|
pos_embed = self.pos_embed.transpose(1,2).to(tokens.device) |
|
elif self.interpolate_pe_method == 'two_dim': |
|
ori_h = ori_w = int(self.pos_embed.shape[1] ** 0.5) |
|
pos_embed = self.pos_embed.reshape(1, ori_h, ori_w, -1).permute(0,3,1,2) |
|
else: |
|
raise TypeError("The interpolation method for pe should be one_dim, two_dim.") |
|
cnt = 0 |
|
for t, h, w in grid_thws: |
|
num_patches = h * w |
|
thw = t * h * w |
|
if self.interpolate_pe_method == 'one_dim': |
|
pe = F.interpolate(pos_embed, size=num_patches, mode='linear', align_corners=False).transpose(1,2) |
|
elif self.interpolate_pe_method == 'two_dim': |
|
|
|
pe = F.interpolate(pos_embed, size=(h,w), mode='bicubic', align_corners=False) |
|
|
|
pe = pe.permute(0,2,3,1).reshape(1, h*w, -1) |
|
|
|
pe = pe[0].repeat(t,1) |
|
|
|
pe = pe.reshape(t, h//self.hidden_stride, self.hidden_stride, w//self.hidden_stride, self.hidden_stride, -1) |
|
|
|
pe = pe.permute(0,1,3,2,4,5).reshape(thw,-1) |
|
pos_embed_new[cnt:cnt+thw] = pe |
|
|
|
cnt += thw |
|
|
|
tokens = tokens + pos_embed_new |
|
return tokens |
|
|
|
|
|
def apply_rotary_pos_emb_flashatt( |
|
q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
cos = cos.chunk(2, dim=-1)[0].contiguous() |
|
sin = sin.chunk(2, dim=-1)[0].contiguous() |
|
q_embed = apply_rotary_emb(q.float(), cos.float(), sin.float()).type_as(q) |
|
k_embed = apply_rotary_emb(k.float(), cos.float(), sin.float()).type_as(k) |
|
return q_embed, k_embed |
|
|
|
class AIMv2FlashAttention2(nn.Module): |
|
def __init__(self, config: AIMv2Config) -> None: |
|
super().__init__() |
|
dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias) |
|
self.proj = nn.Linear(dim, dim, bias=config.use_bias) |
|
|
|
self.use_rope = not config.disable_rope |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
cu_seqlens: torch.Tensor, |
|
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, |
|
) -> torch.Tensor: |
|
|
|
seq_length = hidden_states.shape[0] |
|
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0) |
|
if self.use_rope: |
|
cos, sin = position_embeddings |
|
q, k = apply_rotary_pos_emb_flashatt(q.unsqueeze(0), k.unsqueeze(0), cos, sin) |
|
q = q.squeeze(0) |
|
k = k.squeeze(0) |
|
|
|
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item() |
|
attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape( |
|
seq_length, -1 |
|
) |
|
attn_output = self.proj(attn_output) |
|
return attn_output |
|
|
|
class AIMv2Block(nn.Module): |
|
def __init__(self, config: AIMv2Config): |
|
super().__init__() |
|
self.attn = AIMv2FlashAttention2(config) |
|
self.norm_1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.mlp = AIMv2SwiGLUFFN(config) |
|
self.norm_2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
def forward( |
|
self, x: torch.Tensor, cu_seqlens: torch.Tensor, position_embeddings: torch.Tensor |
|
) -> torch.Tensor: |
|
x = x + self.attn(self.norm_1(x), cu_seqlens=cu_seqlens, position_embeddings=position_embeddings) |
|
x = x + self.mlp(self.norm_2(x)) |
|
return x |
|
|
|
|
|
class AIMv2Transformer(nn.Module): |
|
def __init__(self, config: AIMv2Config): |
|
super().__init__() |
|
self.blocks = nn.ModuleList( |
|
[AIMv2Block(config) for _ in range(config.num_hidden_layers)] |
|
) |
|
self.post_trunk_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.gradient_checkpointing = False |
|
|
|
self.rotary_pos_emb = VisionRotaryEmbedding(config.hidden_size // config.num_attention_heads // 2) |
|
|
|
self.hidden_stride = config.hidden_stride |
|
self.patch_size = config.patch_size |
|
self.window_size = config.window_size |
|
self.spatial_merge_unit = config.hidden_stride * config.hidden_stride |
|
|
|
self.fullatt_block_indexes = config.fullatt_block_indexes |
|
|
|
|
|
def rot_pos_emb(self, grid_thw): |
|
pos_ids = [] |
|
for t, h, w in grid_thw: |
|
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w) |
|
hpos_ids = hpos_ids.reshape( |
|
h // self.hidden_stride, |
|
self.hidden_stride, |
|
w // self.hidden_stride, |
|
self.hidden_stride, |
|
) |
|
hpos_ids = hpos_ids.permute(0, 2, 1, 3) |
|
hpos_ids = hpos_ids.flatten() |
|
|
|
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1) |
|
wpos_ids = wpos_ids.reshape( |
|
h // self.hidden_stride, |
|
self.hidden_stride, |
|
w // self.hidden_stride, |
|
self.hidden_stride, |
|
) |
|
wpos_ids = wpos_ids.permute(0, 2, 1, 3) |
|
wpos_ids = wpos_ids.flatten() |
|
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)) |
|
pos_ids = torch.cat(pos_ids, dim=0) |
|
max_grid_size = grid_thw[:, 1:].max() |
|
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size) |
|
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1) |
|
return rotary_pos_emb |
|
|
|
def get_window_index(self, grid_thw): |
|
window_index: list = [] |
|
cu_window_seqlens: list = [0] |
|
window_index_id = 0 |
|
vit_merger_window_size = self.window_size // self.hidden_stride // self.patch_size |
|
|
|
for grid_t, grid_h, grid_w in grid_thw: |
|
llm_grid_h, llm_grid_w = ( |
|
grid_h // self.hidden_stride, |
|
grid_w // self.hidden_stride, |
|
) |
|
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w) |
|
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size |
|
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size |
|
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size |
|
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size |
|
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100) |
|
index_padded = index_padded.reshape( |
|
grid_t, |
|
num_windows_h, |
|
vit_merger_window_size, |
|
num_windows_w, |
|
vit_merger_window_size, |
|
) |
|
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape( |
|
grid_t, |
|
num_windows_h * num_windows_w, |
|
vit_merger_window_size, |
|
vit_merger_window_size, |
|
) |
|
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1) |
|
index_padded = index_padded.reshape(-1) |
|
index_new = index_padded[index_padded != -100] |
|
window_index.append(index_new + window_index_id) |
|
cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1] |
|
cu_window_seqlens.extend(cu_seqlens_tmp.tolist()) |
|
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item() |
|
window_index = torch.cat(window_index, dim=0) |
|
|
|
return window_index, cu_window_seqlens |
|
|
|
def forward( |
|
self, |
|
tokens: torch.Tensor, |
|
grid_thws: torch.Tensor, |
|
output_hidden_states: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]: |
|
|
|
rotary_pos_emb = self.rot_pos_emb(grid_thws) |
|
window_index, cu_window_seqlens = self.get_window_index(grid_thws) |
|
cu_window_seqlens = torch.tensor( |
|
cu_window_seqlens, |
|
device=tokens.device, |
|
dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32, |
|
) |
|
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens) |
|
|
|
seq_len, _ = tokens.size() |
|
tokens = tokens.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1) |
|
tokens = tokens[window_index, :, :] |
|
tokens = tokens.reshape(seq_len, -1) |
|
rotary_pos_emb = rotary_pos_emb.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1) |
|
rotary_pos_emb = rotary_pos_emb[window_index, :, :] |
|
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1) |
|
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1) |
|
position_embeddings = (emb.cos(), emb.sin()) |
|
|
|
cu_seqlens = torch.repeat_interleave(grid_thws[:, 1] * grid_thws[:, 2], grid_thws[:, 0]).cumsum( |
|
dim=0, |
|
|
|
|
|
|
|
|
|
dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32, |
|
) |
|
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0) |
|
|
|
reverse_indices = torch.argsort(window_index) |
|
|
|
hidden_states = () if output_hidden_states else None |
|
for index, block in enumerate(self.blocks): |
|
if self.fullatt_block_indexes is None or index in self.fullatt_block_indexes: |
|
cu_seqlens_tmp = cu_seqlens |
|
else: |
|
cu_seqlens_tmp = cu_window_seqlens |
|
if self.gradient_checkpointing and self.training: |
|
tokens = self._gradient_checkpointing_func(block.__call__, tokens, cu_seqlens_tmp, position_embeddings) |
|
else: |
|
tokens = block(tokens, cu_seqlens_tmp, position_embeddings) |
|
if output_hidden_states: |
|
tokens_ = tokens.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1) |
|
hidden_states += (tokens_[reverse_indices,:].reshape(seq_len, -1),) |
|
tokens = self.post_trunk_norm(tokens) |
|
tokens = tokens.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1) |
|
tokens = tokens[reverse_indices,:].reshape(seq_len, -1) |
|
|
|
return tokens, hidden_states |
|
|
|
|
|
class AIMv2PretrainedModel(PreTrainedModel): |
|
config_class = AIMv2Config |
|
base_model_prefix = "aimv2" |
|
supports_gradient_checkpointing = True |
|
main_input_name = "pixel_values" |
|
_no_split_modules = ["AIMv2ViTPreprocessor", "AIMv2Block"] |
|
_supports_sdpa = True |
|
|
|
|
|
class AIMv2Model(AIMv2PretrainedModel): |
|
def __init__(self, config: AIMv2Config): |
|
super().__init__(config) |
|
self.preprocessor = AIMv2ViTPreprocessor(config) |
|
self.trunk = AIMv2Transformer(config) |
|
|
|
def forward( |
|
self, |
|
pixel_values: torch.Tensor, |
|
grid_thws: torch.Tensor, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[ |
|
Tuple[torch.Tensor], |
|
Tuple[torch.Tensor, Tuple[torch.Tensor, ...]], |
|
BaseModelOutputWithNoAttention, |
|
]: |
|
if output_hidden_states is None: |
|
output_hidden_states = self.config.output_hidden_states |
|
if return_dict is None: |
|
return_dict = self.config.use_return_dict |
|
|
|
x = self.preprocessor(pixel_values, grid_thws=grid_thws) |
|
|
|
x, hidden_states = self.trunk( |
|
x, grid_thws=grid_thws, output_hidden_states=output_hidden_states |
|
) |
|
|
|
if not return_dict: |
|
res = (x,) |
|
res += (hidden_states,) if output_hidden_states else () |
|
return res |
|
|
|
return BaseModelOutputWithNoAttention( |
|
last_hidden_state=x, |
|
hidden_states=hidden_states, |
|
) |
|
|