File size: 16,208 Bytes
f304131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
# adapted from https://huggingface.co/apple/aimv2-huge-patch14-448 (modification: add gradient checkpoint support)
from typing import Optional, Tuple, Union

import torch
from torch import nn
from torch.nn import functional as F
from transformers.modeling_outputs import BaseModelOutputWithNoAttention
from transformers.modeling_utils import PreTrainedModel
from flash_attn.layers.rotary import apply_rotary_emb
from flash_attn import flash_attn_varlen_func

from .configuration_aimv2 import AIMv2Config


__all__ = ["AIMv2Model"]


class RMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(dim))
        self.eps = eps

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        output = self._norm(x.float()).type_as(x)
        return output * self.weight

    def extra_repr(self) -> str:
        return f"{tuple(self.weight.shape)}, eps={self.eps}"

    def _norm(self, x: torch.Tensor) -> torch.Tensor:
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)


class AIMv2SwiGLUFFN(nn.Module):
    def __init__(self, config: AIMv2Config):
        super().__init__()
        hidden_features = config.intermediate_size
        in_features = config.hidden_size
        bias = config.use_bias

        self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
        self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
        self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = F.silu(self.fc1(x)) * self.fc3(x)
        x = self.fc2(x)
        return x


# copied from qwen2.5-vl
class VisionRotaryEmbedding(nn.Module):
    def __init__(self, dim: int, theta: float = 10000.0) -> None:
        super().__init__()
        inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
        self.register_buffer("inv_freq", inv_freq, persistent=False)

    def forward(self, seqlen: int) -> torch.Tensor:
        seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
        freqs = torch.outer(seq, self.inv_freq)
        return freqs
    
# Note: in qwen2-vl and qwen2.5-vl, 3d convolution is used.
class AIMv2PatchEmbed(nn.Module):
    def __init__(self, config: AIMv2Config):
        super().__init__()
        self.config = config
        self.proj = nn.Conv2d(
            config.num_channels,
            config.hidden_size,
            kernel_size=(config.patch_size, config.patch_size),
            stride=(config.patch_size, config.patch_size),
        )
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = x.view(-1, self.config.num_channels * self.config.temporal_patch_size, self.config.patch_size, self.config.patch_size)
        x = self.proj(x).view(-1, self.config.hidden_size) #.flatten(2).transpose(1, 2) # token_len x hidden_size
        x = self.norm(x)
        return x

class AIMv2ViTPreprocessor(nn.Module):
    def __init__(self, config: AIMv2Config):
        super().__init__()

        num_patches = (config.image_size // config.patch_size) ** 2

        self.patchifier = AIMv2PatchEmbed(config)

        self.preserve_original_pe = config.preserve_original_pe
        self.hidden_stride = config.hidden_stride

        if self.preserve_original_pe:
            self.interpolate_pe_method = config.interpolate_pe_method
            self.pos_embed = nn.Parameter(torch.zeros((1, num_patches, config.hidden_size)))

    def forward(self, x: torch.Tensor, grid_thws: Optional[torch.Tensor] = None) -> torch.Tensor:
        tokens = self.patchifier(x)

        if self.preserve_original_pe:
            assert grid_thws is not None
            pos_embed_new = torch.zeros_like(tokens)
            if self.interpolate_pe_method == 'one_dim':
                pos_embed = self.pos_embed.transpose(1,2).to(tokens.device)
            elif self.interpolate_pe_method == 'two_dim':
                ori_h = ori_w = int(self.pos_embed.shape[1] ** 0.5)
                pos_embed = self.pos_embed.reshape(1, ori_h, ori_w, -1).permute(0,3,1,2)
            else:
                raise TypeError("The interpolation method for pe should be one_dim, two_dim.")
            cnt = 0
            for t, h, w in grid_thws:
                num_patches = h * w
                thw = t * h * w
                if self.interpolate_pe_method == 'one_dim':
                    pe = F.interpolate(pos_embed, size=num_patches, mode='linear', align_corners=False).transpose(1,2)
                elif self.interpolate_pe_method == 'two_dim':
                    # 1, 1024, 32, 32
                    pe = F.interpolate(pos_embed, size=(h,w), mode='bicubic', align_corners=False)
                    # 1, 1024, 1024
                    pe = pe.permute(0,2,3,1).reshape(1, h*w, -1)
                # 1024, 1024
                pe = pe[0].repeat(t,1)
                # 1, 16, 2, 16, 2, 1024
                pe = pe.reshape(t, h//self.hidden_stride, self.hidden_stride, w//self.hidden_stride, self.hidden_stride, -1)
                # 1024, 1024
                pe = pe.permute(0,1,3,2,4,5).reshape(thw,-1)
                pos_embed_new[cnt:cnt+thw] = pe

                cnt += thw

            tokens = tokens + pos_embed_new
        return tokens

# copied from qwen2.5-vl
def apply_rotary_pos_emb_flashatt(
    q: torch.Tensor, k: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
    cos = cos.chunk(2, dim=-1)[0].contiguous()
    sin = sin.chunk(2, dim=-1)[0].contiguous()
    q_embed = apply_rotary_emb(q.float(), cos.float(), sin.float()).type_as(q)
    k_embed = apply_rotary_emb(k.float(), cos.float(), sin.float()).type_as(k)
    return q_embed, k_embed

class AIMv2FlashAttention2(nn.Module):
    def __init__(self, config: AIMv2Config) -> None:
        super().__init__()
        dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias)
        self.proj = nn.Linear(dim, dim, bias=config.use_bias)

        self.use_rope = not config.disable_rope
        
    def forward(
        self,
        hidden_states: torch.Tensor,
        cu_seqlens: torch.Tensor,
        position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
    ) -> torch.Tensor:

        seq_length = hidden_states.shape[0]
        q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
        if self.use_rope:
            cos, sin = position_embeddings
            q, k = apply_rotary_pos_emb_flashatt(q.unsqueeze(0), k.unsqueeze(0), cos, sin)
            q = q.squeeze(0)
            k = k.squeeze(0)

        max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
        attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
            seq_length, -1
        )
        attn_output = self.proj(attn_output)
        return attn_output

class AIMv2Block(nn.Module):
    def __init__(self, config: AIMv2Config):
        super().__init__()
        self.attn = AIMv2FlashAttention2(config)
        self.norm_1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.mlp = AIMv2SwiGLUFFN(config)
        self.norm_2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self, x: torch.Tensor, cu_seqlens: torch.Tensor, position_embeddings: torch.Tensor
    ) -> torch.Tensor:
        x = x + self.attn(self.norm_1(x), cu_seqlens=cu_seqlens, position_embeddings=position_embeddings)
        x = x + self.mlp(self.norm_2(x))
        return x


class AIMv2Transformer(nn.Module):
    def __init__(self, config: AIMv2Config):
        super().__init__()
        self.blocks = nn.ModuleList(
            [AIMv2Block(config) for _ in range(config.num_hidden_layers)]
        )
        self.post_trunk_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.gradient_checkpointing = False

        self.rotary_pos_emb = VisionRotaryEmbedding(config.hidden_size // config.num_attention_heads // 2)
        
        self.hidden_stride = config.hidden_stride
        self.patch_size = config.patch_size
        self.window_size = config.window_size
        self.spatial_merge_unit = config.hidden_stride * config.hidden_stride
        
        self.fullatt_block_indexes = config.fullatt_block_indexes

    # copied from qwen2.5_vl
    def rot_pos_emb(self, grid_thw):
        pos_ids = []
        for t, h, w in grid_thw:
            hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
            hpos_ids = hpos_ids.reshape(
                h // self.hidden_stride,
                self.hidden_stride,
                w // self.hidden_stride,
                self.hidden_stride,
            )
            hpos_ids = hpos_ids.permute(0, 2, 1, 3)
            hpos_ids = hpos_ids.flatten()

            wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
            wpos_ids = wpos_ids.reshape(
                h // self.hidden_stride,
                self.hidden_stride,
                w // self.hidden_stride,
                self.hidden_stride,
            )
            wpos_ids = wpos_ids.permute(0, 2, 1, 3)
            wpos_ids = wpos_ids.flatten()
            pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
        pos_ids = torch.cat(pos_ids, dim=0)
        max_grid_size = grid_thw[:, 1:].max()
        rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
        rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
        return rotary_pos_emb

    def get_window_index(self, grid_thw):
        window_index: list = []
        cu_window_seqlens: list = [0]
        window_index_id = 0
        vit_merger_window_size = self.window_size // self.hidden_stride // self.patch_size # patch (after merge) number in each window

        for grid_t, grid_h, grid_w in grid_thw:
            llm_grid_h, llm_grid_w = (
                grid_h // self.hidden_stride, # number of patch after merge
                grid_w // self.hidden_stride,
            )
            index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w)
            pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
            pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
            num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
            num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
            index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
            index_padded = index_padded.reshape(
                grid_t,
                num_windows_h,
                vit_merger_window_size,
                num_windows_w,
                vit_merger_window_size,
            )
            index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
                grid_t,
                num_windows_h * num_windows_w,
                vit_merger_window_size,
                vit_merger_window_size,
            )
            seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
            index_padded = index_padded.reshape(-1)
            index_new = index_padded[index_padded != -100]
            window_index.append(index_new + window_index_id)
            cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_unit + cu_window_seqlens[-1]
            cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
            window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
        window_index = torch.cat(window_index, dim=0)

        return window_index, cu_window_seqlens

    def forward(
        self,
        tokens: torch.Tensor,
        grid_thws: torch.Tensor,
        output_hidden_states: bool = False,
    ) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]:
        # RoPE, modified from qwen2.5_vl
        rotary_pos_emb = self.rot_pos_emb(grid_thws)
        window_index, cu_window_seqlens = self.get_window_index(grid_thws)
        cu_window_seqlens = torch.tensor(
            cu_window_seqlens,
            device=tokens.device,
            dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32,
        )
        cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)

        seq_len, _ = tokens.size()
        tokens = tokens.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
        tokens = tokens[window_index, :, :]
        tokens = tokens.reshape(seq_len, -1)
        rotary_pos_emb = rotary_pos_emb.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
        rotary_pos_emb = rotary_pos_emb[window_index, :, :]
        rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
        emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
        position_embeddings = (emb.cos(), emb.sin())

        cu_seqlens = torch.repeat_interleave(grid_thws[:, 1] * grid_thws[:, 2], grid_thws[:, 0]).cumsum(
            dim=0,
            # Select dtype based on the following factors:
            #  - FA2 requires that cu_seqlens_q must have dtype int32
            #  - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
            # See https://github.com/huggingface/transformers/pull/34852 for more information
            dtype=grid_thws.dtype if torch.jit.is_tracing() else torch.int32,
        )
        cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)

        reverse_indices = torch.argsort(window_index)
        
        hidden_states = () if output_hidden_states else None
        for index, block in enumerate(self.blocks):
            if self.fullatt_block_indexes is None or index in self.fullatt_block_indexes:
                cu_seqlens_tmp = cu_seqlens
            else:
                cu_seqlens_tmp = cu_window_seqlens
            if self.gradient_checkpointing and self.training:
                tokens = self._gradient_checkpointing_func(block.__call__, tokens, cu_seqlens_tmp, position_embeddings)
            else:
                tokens = block(tokens, cu_seqlens_tmp, position_embeddings)
            if output_hidden_states:
                tokens_ = tokens.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
                hidden_states += (tokens_[reverse_indices,:].reshape(seq_len, -1),)
        tokens = self.post_trunk_norm(tokens)
        tokens = tokens.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
        tokens = tokens[reverse_indices,:].reshape(seq_len, -1)
        
        return tokens, hidden_states


class AIMv2PretrainedModel(PreTrainedModel):
    config_class = AIMv2Config
    base_model_prefix = "aimv2"
    supports_gradient_checkpointing = True
    main_input_name = "pixel_values"
    _no_split_modules = ["AIMv2ViTPreprocessor", "AIMv2Block"]
    _supports_sdpa = True


class AIMv2Model(AIMv2PretrainedModel):
    def __init__(self, config: AIMv2Config):
        super().__init__(config)
        self.preprocessor = AIMv2ViTPreprocessor(config)
        self.trunk = AIMv2Transformer(config)

    def forward(
        self,
        pixel_values: torch.Tensor,
        grid_thws: torch.Tensor,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[
        Tuple[torch.Tensor],
        Tuple[torch.Tensor, Tuple[torch.Tensor, ...]],
        BaseModelOutputWithNoAttention,
    ]:
        if output_hidden_states is None:
            output_hidden_states = self.config.output_hidden_states
        if return_dict is None:
            return_dict = self.config.use_return_dict

        x = self.preprocessor(pixel_values, grid_thws=grid_thws)
        
        x, hidden_states = self.trunk(
            x, grid_thws=grid_thws, output_hidden_states=output_hidden_states
        )

        if not return_dict:
            res = (x,)
            res += (hidden_states,) if output_hidden_states else ()
            return res

        return BaseModelOutputWithNoAttention(
            last_hidden_state=x,
            hidden_states=hidden_states,
        )