MARTINI_enrich_BERTopic_grmedfa

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_grmedfa")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 6
  • Number of training documents: 582
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 everyone - vaccinated - ivermectin - 2022 - bbc 26 -1_everyone_vaccinated_ivermectin_2022
0 greekmedicalfreedomalliance - δηλωσε - ελλαδα - γιατι - ομαδα 334 0_greekmedicalfreedomalliance_δηλωσε_ελλαδα_γιατι
1 worldcouncilforhealth - betterwayconference - wai - parliament - virtual 82 1_worldcouncilforhealth_betterwayconference_wai_parliament
2 fauci - davos - physician - webinar - berberine 60 2_fauci_davos_physician_webinar
3 vaccinated - mhra - coronavirus - doses - january 50 3_vaccinated_mhra_coronavirus_doses
4 vaccins - fda - plasmids - cv19 - contaminated 30 4_vaccins_fda_plasmids_cv19

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support