ABHIiiii1's picture
Add new SentenceTransformer model.
1334e10 verified
|
raw
history blame
18.1 kB
metadata
base_model: sentence-transformers/LaBSE
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:22151
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      3 . Estimated cost of the project is Rs . 11 ,076 .48 Cr . and project
      will be completed in 5 years .
    sentences:
      - >-
        প্রোজেক্ত অসিদা চংগনি হায়না পানরিবা শেনফম্না লুপা ক্রোর ১১ ,০৭৬.৪৮নি
        অমসুং মসি চহি ৫দা মপুং ফানা লোইশিনগনি ।
      - বেসিক ত্রেনিং প্রোভাইদরশীংগী ইলিজিবিলিতি
      - সর্ভিস ভোটরশীং অসি মখোয়গী য়ুমগী এদ্রেস অদুগী রেসিদেন্টনি হায়না লৌগনি 
  - source_sentence: >-
      The Prime Minister , Shri Narendra Modi has congratulated Aanchal Thakur
      on winning India’s first international medal in skiing at FIS
      International Skiing Competition in Turkey .
    sentences:
      - >-
        করিগুম্বা মথক্তা পনখ্রিবা কম্পোষ্টিংগী ফিভমশীং অসি ঙাক্লবদি ,  কম্পোষ্ট
        অদুদা ফিজিকেল পেরামিটর খরা উবা ফংবদা নুমিৎ হুম্ফুনিগী  (  নুমিৎ ৬০  )  
        মতম চংগনি ।
      - >-
        নহাক্না TV মুত্থৎপা মতমদা HD সেট তোপ বোক্স অদু প্লগ পোইন্টতা স্বিটচ ওফ
        তৌ ।
      - >-
        তর্কীদা পাংথোকপা এফআইএস ইন্তরনেস্নেল স্কাইং কম্পিতিসন্দা স্কাইংদা ভারতকী
        অহানবা অন্তরজাতিগী তকমান লৌরকপদা প্রধানমন্ত্রী শ্রী নরেন্দ্র মোদীনা
        আঞ্চল ঠাকুরবু থাগৎপা ফোংদোকখ্রে ।
  - source_sentence: motorized traditional ratt
    sentences:
      - মোটোরাইজ ত্রেদিস্নেল রাট
      - >-
        ভারতনা এপ্রোচ তৌরিবা অদুদি য়ু.এন.এফ.সি.সি.সি.গী প্রিন্সিপলশিং অমসুং
        প্রোভিজনশিং অমসুং ইক্ব্যুইতী অমসুং কমন বত দিফরেনসিয়েতেদ
        রেস্পোন্সিবিলিতীজ এন্দ রেস্পেক্তিব কেপাবিলিতী ( সি.বি.পি.আর-আর.সি. ) না
        গাইদ তৌবনি ।
      - >-
        প্রধান মন্ত্রী শ্রী নরেন্দ্র মোদীনা অহল ওইরবা পাউমী অমসুং হান্নগী রাজ্য
        সভাগী মীহুৎ ওইবীরম্বা কুলদীপ নায়রনা লৈখিদবদা অৱাবা ফোংদোকখ্রে ।
  - source_sentence: >-
      His decision making ability infused in him the strength to overcome all
      obstacles .
    sentences:
      - >-
        প্রধান মন্ত্রীনা হান্নগী রাস্ত্রপতি মোহমদ নশীদকসু ৱারী শান্নখি অমদি
        মহাক্কী মায় পাক্লকপদসু নুংঙাইবা ফোংদোকখি ।
      - রিলিফ এমপ্লোয়মেন্ট
      - >-
        অমসুং মরম অসিনা মহাক্কী মপোক নুমিৎ অসি ‘রাষ্ট্রীয় এক্তা দিবস’ হায়না
        পাংথোক্লিবনি ।
  - source_sentence: additional channel for banking and key catalyst for financial inclusion
    sentences:
      - >-
        বেঙ্কিংগী অহেনবা চেনেল অমসুং ফাইনান্সিএল ইনক্লুজনগীদমক্তা মরুওইবা
        কেটালিষ্ট  অমা ওই ।
      - >-
        মসিগা মান্ননা ,  কম্প্যুটর সিষ্টেমশীংদা পাক-চাউনা অমাং-অতা থোকহনগদবা
        মাং-তাক্নিংঙাই ওইবা কম্প্যুটর প্রোগ্রাম শেম্বা অমসুং শন্দোকপা হায়বসিসু
        সাইবরক্রাইমগী অতোপ্পা মখল অমনি ।
      - >-
        7. মহাক্কী অখন্নবা অতিথি অমা ওইনা রাস্ত্রপতি সোলি ৱাশক লৌবগী থৌরম শরুক
        য়ানবা মহাক্না হন্দক মালদিব্সতা চৎলুবা খোঙচৎ অদু প্রধান মন্ত্রী মোদীনা
        নিংশিংখি ।

SentenceTransformer based on sentence-transformers/LaBSE

This is a sentence-transformers model finetuned from sentence-transformers/LaBSE. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/LaBSE
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
  (3): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("ABHIiiii1/LaBSE-Fine-Tuned-EN-MN")
# Run inference
sentences = [
    'additional channel for banking and key catalyst for financial inclusion',
    'বেঙ্কিংগী অহেনবা চেনেল অমসুং ফাইনান্সিএল ইনক্লুজনগীদমক্তা মরুওইবা কেটালিষ্ট  অমা ওই ।',
    '7. মহাক্কী অখন্নবা অতিথি অমা ওইনা রাস্ত্রপতি সোলি ৱাশক লৌবগী থৌরম শরুক য়ানবা মহাক্না হন্দক মালদিব্সতা চৎলুবা খোঙচৎ অদু প্রধান মন্ত্রী মোদীনা নিংশিংখি ।',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 22,151 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 3 tokens
    • mean: 21.12 tokens
    • max: 73 tokens
    • min: 3 tokens
    • mean: 49.95 tokens
    • max: 196 tokens
  • Samples:
    sentence_0 sentence_1
    The Prime Minister , Shri Narendra Modi , today launched the health assurance scheme : Ayushman Bharat – Pradhan Mantri Jan Arogya Yojana – at Ranchi , Jharkhand . ঙসি প্রধান মন্ত্রী নরেন্দ্র মোদীনা ঝারখান্দগী রাঞ্চীদা হেল্থ ইন্সুরেন্স স্কিম : আয়ুশ্মান ভারত-প্রধান মন্ত্রী জন অরোগ্য য়োজনা হৌদোক্লে ।
    the portal provides information about all these topics পোর্টেল অসিদা হিরম পুম্নমক অসিগী মতাংদা ঈ-পাউ পীরি ।
    The Prime Minister said that during the implementation of GST , there was active follow up on complaints and suggestions . জি এস তি ইমপ্লিমেন্ত তৌবা মতম অদুদা ৱাকৎশিং অমসুং পাউতাকশিংদা এক্তিব ওইনা ফোল্লো অপ তৌখি হায়না প্রধান মন্ত্রীনা হায়খি ।
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss
0.3610 500 0.2968
0.7220 1000 0.1414
1.0830 1500 0.1005
1.4440 2000 0.0483
1.8051 2500 0.0346
2.1661 3000 0.0229
2.5271 3500 0.0121
2.8881 4000 0.0085

Framework Versions

  • Python: 3.10.13
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.3
  • PyTorch: 2.1.2
  • Accelerate: 0.32.1
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}