Commit
·
9fa51cd
1
Parent(s):
e3e555a
Upload finetuning_multilingual_02_adafactor.py
Browse files
finetuning_multilingual_02_adafactor.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# multilingual-sentimentsデータでfinetuning
|
2 |
+
|
3 |
+
# %%
|
4 |
+
import torch
|
5 |
+
# GPUが使用可能か判断
|
6 |
+
if torch.cuda.is_available():
|
7 |
+
print('gpu is available')
|
8 |
+
else:
|
9 |
+
raise Exception('gpu is NOT available')
|
10 |
+
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
device
|
13 |
+
|
14 |
+
# %%
|
15 |
+
from datasets import load_dataset, DatasetDict
|
16 |
+
from transformers import AutoTokenizer
|
17 |
+
from transformers import AutoModelForSequenceClassification
|
18 |
+
from transformers import TrainingArguments
|
19 |
+
from transformers import Trainer
|
20 |
+
from sklearn.metrics import accuracy_score, f1_score
|
21 |
+
import numpy as np
|
22 |
+
import pandas as pd
|
23 |
+
import torch
|
24 |
+
import random
|
25 |
+
|
26 |
+
# %%
|
27 |
+
from transformers.trainer_utils import set_seed
|
28 |
+
|
29 |
+
# 乱数シードを42に固定
|
30 |
+
set_seed(42)
|
31 |
+
|
32 |
+
# %% [markdown]
|
33 |
+
# ## データ取得
|
34 |
+
|
35 |
+
# %%
|
36 |
+
from pprint import pprint
|
37 |
+
from datasets import load_dataset
|
38 |
+
|
39 |
+
# Hugging Face Hub上のllm-book/wrime-sentimentのリポジトリから
|
40 |
+
# データを読み込む
|
41 |
+
train_dataset = load_dataset("tyqiangz/multilingual-sentiments", "japanese", split="train")
|
42 |
+
valid_dataset = load_dataset("tyqiangz/multilingual-sentiments", "japanese", split="validation")
|
43 |
+
# pprintで見やすく表示する
|
44 |
+
pprint(train_dataset)
|
45 |
+
pprint(valid_dataset)
|
46 |
+
|
47 |
+
# # 実験のためデータセットを縮小したい場合はコチラを有効化
|
48 |
+
# train_dataset = train_dataset.select(
|
49 |
+
# random.sample(range(train_dataset.num_rows), k=500))
|
50 |
+
# valid_dataset = valid_dataset.select(
|
51 |
+
# random.sample(range(valid_dataset.num_rows), k=500))
|
52 |
+
# pprint(train_dataset)
|
53 |
+
# pprint(valid_dataset)
|
54 |
+
|
55 |
+
## データ前処理
|
56 |
+
|
57 |
+
# %%
|
58 |
+
# トークナイザのロード
|
59 |
+
model_name = "cl-tohoku/bert-base-japanese-whole-word-masking"
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
61 |
+
|
62 |
+
# %%
|
63 |
+
# トークナイザ実行用関数
|
64 |
+
def preprocess_text(batch):
|
65 |
+
encoded_batch = tokenizer(batch['text'], max_length=512)
|
66 |
+
encoded_batch['labels'] = batch['label']
|
67 |
+
return encoded_batch
|
68 |
+
|
69 |
+
# %%
|
70 |
+
# トークナイズ+エンコード処理実行
|
71 |
+
encoded_train_dataset = train_dataset.map(
|
72 |
+
preprocess_text,
|
73 |
+
remove_columns=train_dataset.column_names,
|
74 |
+
)
|
75 |
+
encoded_valid_dataset = valid_dataset.map(
|
76 |
+
preprocess_text,
|
77 |
+
remove_columns=valid_dataset.column_names,
|
78 |
+
)
|
79 |
+
|
80 |
+
# %%
|
81 |
+
# ミニバッチ構築
|
82 |
+
from transformers import DataCollatorWithPadding
|
83 |
+
|
84 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
85 |
+
|
86 |
+
## 最適化するハイパーパラメータの設定
|
87 |
+
|
88 |
+
# %%
|
89 |
+
# オプティマイザ
|
90 |
+
OPTIMIZER_NAME = "adafactor"
|
91 |
+
|
92 |
+
# 最適化するハイパーパラメータ
|
93 |
+
def optuna_hp_space(trial):
|
94 |
+
return {
|
95 |
+
"lr_scheduler_type": trial.suggest_categorical("lr_scheduler_type", ["constant", "linear", "cosine"]),
|
96 |
+
"learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
|
97 |
+
# "per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [16]),
|
98 |
+
"gradient_accumulation_steps": trial.suggest_categorical("gradient_accumulation_steps", [1, 2, 4, 8, 16]),
|
99 |
+
"weight_decay": trial.suggest_float("weight_decay", 1e-6, 1e-1, log=True),
|
100 |
+
}
|
101 |
+
|
102 |
+
# %%
|
103 |
+
# モデルの準備
|
104 |
+
from transformers import AutoModelForSequenceClassification
|
105 |
+
|
106 |
+
def model_init(trial):
|
107 |
+
class_label = train_dataset.features["label"]
|
108 |
+
label2id = {label: id for id, label in enumerate(class_label.names)}
|
109 |
+
id2label = {id: label for id, label in enumerate(class_label.names)}
|
110 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
111 |
+
model_name,
|
112 |
+
num_labels=class_label.num_classes,
|
113 |
+
label2id=label2id, # ラベル名からIDへの対応を指定
|
114 |
+
id2label=id2label, # IDからラベル名への対応を指定
|
115 |
+
)
|
116 |
+
return model
|
117 |
+
|
118 |
+
# %%
|
119 |
+
# 訓練の実行
|
120 |
+
from transformers import TrainingArguments
|
121 |
+
|
122 |
+
training_args = TrainingArguments(
|
123 |
+
optim=OPTIMIZER_NAME, # オプティマイザの種類(adamw_torch/adafactor)
|
124 |
+
output_dir="output_multilingual", # 結果の保存フォルダ
|
125 |
+
per_device_train_batch_size=16, # 訓練時のバッチサイズ
|
126 |
+
# gradient_accumulation_steps=1, # 勾配累積
|
127 |
+
# per_device_eval_batch_size=32, # 評価時のバッチサイズ
|
128 |
+
# learning_rate=2e-5, # 学習率
|
129 |
+
# lr_scheduler_type="constant", # 学習率スケジューラの種類
|
130 |
+
warmup_ratio=0.1, # 学習率のウォームアップの長さを指定
|
131 |
+
num_train_epochs=3, # エポック数
|
132 |
+
save_strategy="epoch", # チェックポイントの保存タイミング
|
133 |
+
logging_strategy="epoch", # ロギングのタイミング
|
134 |
+
evaluation_strategy="epoch", # 検証セットによる評価のタイミング
|
135 |
+
load_best_model_at_end=True, # 訓練後に開発セットで最良のモデルをロード
|
136 |
+
metric_for_best_model="accuracy", # 最良のモデルを決定する評価指標
|
137 |
+
fp16=True, # 自動混合精度演算の有効化
|
138 |
+
)
|
139 |
+
|
140 |
+
# %%
|
141 |
+
# メトリクスの定義
|
142 |
+
def compute_metrics(pred):
|
143 |
+
labels = pred.label_ids
|
144 |
+
preds = pred.predictions.argmax(-1)
|
145 |
+
f1 = f1_score(labels, preds, average="weighted")
|
146 |
+
acc = accuracy_score(labels, preds)
|
147 |
+
return {"accuracy": acc, "f1": f1}
|
148 |
+
|
149 |
+
# %% [markdown]
|
150 |
+
# ## ハイパーパラメータ探索
|
151 |
+
|
152 |
+
# %%
|
153 |
+
from transformers import Trainer
|
154 |
+
|
155 |
+
trainer = Trainer(
|
156 |
+
model=None,
|
157 |
+
train_dataset=encoded_train_dataset,
|
158 |
+
eval_dataset=encoded_valid_dataset,
|
159 |
+
data_collator=data_collator,
|
160 |
+
args=training_args,
|
161 |
+
compute_metrics=compute_metrics,
|
162 |
+
model_init=model_init,
|
163 |
+
)
|
164 |
+
|
165 |
+
# %%
|
166 |
+
def compute_objective(metrics):
|
167 |
+
return metrics["eval_f1"]
|
168 |
+
|
169 |
+
# %%
|
170 |
+
# ハイパーパラメータ探索
|
171 |
+
best_trial = trainer.hyperparameter_search(
|
172 |
+
direction="maximize",
|
173 |
+
backend="optuna",
|
174 |
+
hp_space=optuna_hp_space,
|
175 |
+
n_trials=50,
|
176 |
+
compute_objective=compute_objective,
|
177 |
+
)
|
178 |
+
|
179 |
+
# %%
|
180 |
+
# ベスト-ハイパーパラメータ
|
181 |
+
print('optimizer:',OPTIMIZER_NAME)
|
182 |
+
print('best param:',best_trial)
|
183 |
+
|
184 |
+
## 最適化されたハイパーパラメータでFineTuning
|
185 |
+
|
186 |
+
# %%
|
187 |
+
# モデルの準備
|
188 |
+
from transformers import AutoModelForSequenceClassification
|
189 |
+
|
190 |
+
class_label = train_dataset.features["label"]
|
191 |
+
label2id = {label: id for id, label in enumerate(class_label.names)}
|
192 |
+
id2label = {id: label for id, label in enumerate(class_label.names)}
|
193 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
194 |
+
model_name,
|
195 |
+
num_labels=class_label.num_classes,
|
196 |
+
label2id=label2id, # ラベル名からIDへの対応を指定
|
197 |
+
id2label=id2label, # IDからラベル名への対応を指定
|
198 |
+
)
|
199 |
+
print(type(model).__name__)
|
200 |
+
|
201 |
+
# %%
|
202 |
+
# 訓練用の設定
|
203 |
+
from transformers import TrainingArguments
|
204 |
+
|
205 |
+
# ベストパラメータ
|
206 |
+
best_lr_type = best_trial.hyperparameters['lr_scheduler_type']
|
207 |
+
best_lr = best_trial.hyperparameters['learning_rate']
|
208 |
+
best_grad_acc_steps = best_trial.hyperparameters['gradient_accumulation_steps']
|
209 |
+
best_weight_decay = best_trial.hyperparameters['weight_decay']
|
210 |
+
# 保存ディレクトリ
|
211 |
+
save_dir = f'bert-finetuned-multilingual-sentiments-{OPTIMIZER_NAME}'
|
212 |
+
|
213 |
+
training_args = TrainingArguments(
|
214 |
+
output_dir=save_dir, # 結果の保存フォルダ
|
215 |
+
optim=OPTIMIZER_NAME, # オプティマイザの種類
|
216 |
+
per_device_train_batch_size=16, # 訓練時のバッチサイズ
|
217 |
+
per_device_eval_batch_size=16, # 評価時のバッチサイズ
|
218 |
+
gradient_accumulation_steps=best_grad_acc_steps, # 勾配累積
|
219 |
+
learning_rate=best_lr, # 学習率
|
220 |
+
lr_scheduler_type=best_lr_type, # 学習率スケジューラの種類
|
221 |
+
weight_decay=best_weight_decay, # 正則化
|
222 |
+
warmup_ratio=0.1, # 学習率のウォームアップの長さを指定
|
223 |
+
num_train_epochs=100, # エポック数
|
224 |
+
save_strategy="epoch", # チェックポイントの保存タイミング
|
225 |
+
logging_strategy="epoch", # ロギングのタイミング
|
226 |
+
evaluation_strategy="epoch", # 検証セットによる評価のタイミング
|
227 |
+
load_best_model_at_end=True, # 訓練後に開発セットで最良のモデルをロード
|
228 |
+
metric_for_best_model="accuracy", # 最良のモデルを決定する評価指標
|
229 |
+
fp16=True, # 自動混合精度演算の有効化
|
230 |
+
)
|
231 |
+
|
232 |
+
# %%
|
233 |
+
# 訓練の実施
|
234 |
+
from transformers import Trainer
|
235 |
+
from transformers import EarlyStoppingCallback
|
236 |
+
|
237 |
+
trainer = Trainer(
|
238 |
+
model=model,
|
239 |
+
train_dataset=encoded_train_dataset,
|
240 |
+
eval_dataset=encoded_valid_dataset,
|
241 |
+
data_collator=data_collator,
|
242 |
+
args=training_args,
|
243 |
+
compute_metrics=compute_metrics,
|
244 |
+
callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
|
245 |
+
)
|
246 |
+
trainer.train()
|
247 |
+
|
248 |
+
# %%
|
249 |
+
# モデルの保存
|
250 |
+
trainer.save_model(save_dir)
|
251 |
+
tokenizer.save_pretrained(save_dir)
|
252 |
+
|
253 |
+
# %%
|
254 |
+
# 結果描画用関数
|
255 |
+
import matplotlib.pyplot as plt
|
256 |
+
from sklearn.linear_model import LinearRegression
|
257 |
+
|
258 |
+
def show_graph(df, suptitle, output='output.png'):
|
259 |
+
suptitle_size = 23
|
260 |
+
graph_title_size = 20
|
261 |
+
legend_size = 18
|
262 |
+
ticks_size = 13
|
263 |
+
# 学習曲線
|
264 |
+
fig = plt.figure(figsize=(20, 5))
|
265 |
+
plt.suptitle(suptitle, fontsize=suptitle_size)
|
266 |
+
# Train Loss
|
267 |
+
plt.subplot(131)
|
268 |
+
plt.title('Train Loss', fontsize=graph_title_size)
|
269 |
+
plt.plot(df['loss'].dropna(), label='train')
|
270 |
+
plt.legend(fontsize=legend_size)
|
271 |
+
plt.yticks(fontsize=ticks_size)
|
272 |
+
# Validation Loss
|
273 |
+
plt.subplot(132)
|
274 |
+
plt.title(f'Val Loss', fontsize=graph_title_size)
|
275 |
+
y = df['eval_loss'].dropna().values
|
276 |
+
x = np.arange(len(y)).reshape(-1, 1)
|
277 |
+
plt.plot(y, color='tab:orange', label='val')
|
278 |
+
plt.legend(fontsize=legend_size)
|
279 |
+
plt.yticks(fontsize=ticks_size)
|
280 |
+
# Accuracy/F1
|
281 |
+
plt.subplot(133)
|
282 |
+
plt.title('eval Accuracy/F1', fontsize=graph_title_size)
|
283 |
+
plt.plot(df['eval_accuracy'].dropna(), label='accuracy')
|
284 |
+
plt.plot(df['eval_f1'].dropna(), label='F1')
|
285 |
+
plt.legend(fontsize=legend_size)
|
286 |
+
plt.yticks(fontsize=ticks_size)
|
287 |
+
plt.tight_layout()
|
288 |
+
plt.savefig(output)
|
289 |
+
|
290 |
+
# %%
|
291 |
+
history_df = pd.DataFrame(trainer.state.log_history)
|
292 |
+
history_df.to_csv(f'{save_dir}/history.csv')
|
293 |
+
# 結果を表示
|
294 |
+
suptitle = f'batch:16, lr:{best_lr}, gradient_accumulation: {best_grad_acc_steps}, type:{best_lr_type}, weight_decay:{best_weight_decay}'
|
295 |
+
show_graph(history_df, suptitle, f'{save_dir}/output.png')
|