BD_3_epochs_colpali_v1.3

This model is a fine-tuned version of vidore/colpaligemma-3b-pt-448-base on the 3sara/bounding_doc_clean dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3903

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
No log 0.0040 1 0.9861
1.6717 0.4012 100 0.4507
1.4046 0.8024 200 0.3875
1.2309 1.2046 300 0.3866
1.3361 1.6058 400 0.3793
1.3497 2.0080 500 0.3778
1.2154 2.4092 600 0.3653
1.2651 2.8104 700 0.3554
1.1827 3.2126 800 0.3432
1.2514 3.6138 900 0.3469
1.0762 4.0160 1000 0.3704
1.1595 4.4173 1100 0.3552
1.2052 4.8185 1200 0.3791
1.2966 5.2207 1300 0.3668
1.1034 5.6219 1400 0.3693
1.0709 6.0241 1500 0.3788
1.1456 6.4253 1600 0.3635
0.9316 6.8265 1700 0.3847
1.1855 7.2287 1800 0.3846
1.246 7.6299 1900 0.3711
0.962 8.0321 2000 0.3791
1.056 8.4333 2100 0.3928
1.0595 8.8345 2200 0.3907
0.9379 9.2367 2300 0.3890
1.1661 9.6379 2400 0.3903

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.7.1+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for 3sara/BD_10_epochs_colpali_v1.3

Adapter
(19)
this model