Affine-8888888 / vllm_template_gptoss.py
0xShonen's picture
Upload vllm_template_gptoss.py
18b3855 verified
import asyncio
import json
import os
from enum import Enum
from pydantic import BaseModel, Field
from typing import Dict, Any, Callable, Literal, Optional, Union, List
from chutes.image import Image
from chutes.image.standard.vllm import VLLM
from chutes.chute import Chute, ChutePack, NodeSelector
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"
class DefaultRole(Enum):
user = "user"
assistant = "assistant"
class ChatMessage(BaseModel):
role: str
content: str
class Logprob(BaseModel):
logprob: float
rank: Optional[int] = None
decoded_token: Optional[str] = None
class ResponseFormat(BaseModel):
type: Literal["text", "json_object", "json_schema"]
json_schema: Optional[Dict] = None
class BaseRequest(BaseModel):
model: str
frequency_penalty: Optional[float] = 0.0
logit_bias: Optional[Dict[str, float]] = None
logprobs: Optional[bool] = False
top_logprobs: Optional[int] = 0
max_tokens: Optional[int] = None
presence_penalty: Optional[float] = 0.0
response_format: Optional[ResponseFormat] = None
seed: Optional[int] = Field(None, ge=0, le=9223372036854775807)
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
stream: Optional[bool] = False
temperature: Optional[float] = 0.7
top_p: Optional[float] = 1.0
best_of: Optional[int] = None
use_beam_search: bool = False
top_k: int = -1
min_p: float = 0.0
repetition_penalty: float = 1.0
length_penalty: float = 1.0
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
include_stop_str_in_output: bool = False
ignore_eos: bool = False
min_tokens: int = 0
skip_special_tokens: bool = True
spaces_between_special_tokens: bool = True
prompt_logprobs: Optional[int] = None
class UsageInfo(BaseModel):
prompt_tokens: int = 0
total_tokens: int = 0
completion_tokens: Optional[int] = 0
class TokenizeRequest(BaseRequest):
model: str
prompt: str
add_special_tokens: bool
class DetokenizeRequest(BaseRequest):
model: str
tokens: List[int]
class ChatCompletionRequest(BaseRequest):
messages: List[ChatMessage]
class CompletionRequest(BaseRequest):
prompt: str
class ChatCompletionLogProb(BaseModel):
token: str
logprob: float = -9999.0
bytes: Optional[List[int]] = None
class ChatCompletionLogProbsContent(ChatCompletionLogProb):
top_logprobs: List[ChatCompletionLogProb] = Field(default_factory=list)
class ChatCompletionLogProbs(BaseModel):
content: Optional[List[ChatCompletionLogProbsContent]] = None
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessage
logprobs: Optional[ChatCompletionLogProbs] = None
finish_reason: Optional[str] = "stop"
stop_reason: Optional[Union[int, str]] = None
class ChatCompletionResponse(BaseModel):
id: str
object: Literal["chat.completion"] = "chat.completion"
created: int
model: str
choices: List[ChatCompletionResponseChoice]
usage: UsageInfo
prompt_logprobs: Optional[List[Optional[Dict[int, Logprob]]]] = None
class TokenizeResponse(BaseRequest):
count: int
max_model_len: int
tokens: List[int]
class DetokenizeResponse(BaseRequest):
prompt: str
class DeltaMessage(BaseModel):
role: Optional[str] = None
content: Optional[str] = None
class ChatCompletionResponseStreamChoice(BaseModel):
index: int
delta: DeltaMessage
logprobs: Optional[ChatCompletionLogProbs] = None
finish_reason: Optional[str] = None
stop_reason: Optional[Union[int, str]] = None
class ChatCompletionStreamResponse(BaseModel):
id: str
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
created: int
model: str
choices: List[ChatCompletionResponseStreamChoice]
usage: Optional[UsageInfo] = Field(default=None)
class CompletionLogProbs(BaseModel):
text_offset: List[int] = Field(default_factory=list)
token_logprobs: List[Optional[float]] = Field(default_factory=list)
tokens: List[str] = Field(default_factory=list)
top_logprobs: List[Optional[Dict[str, float]]] = Field(default_factory=list)
class CompletionResponseChoice(BaseModel):
index: int
text: str
logprobs: Optional[CompletionLogProbs] = None
finish_reason: Optional[str] = None
stop_reason: Optional[Union[int, str]] = Field(
default=None,
description=(
"The stop string or token id that caused the completion "
"to stop, None if the completion finished for some other reason "
"including encountering the EOS token"
),
)
prompt_logprobs: Optional[List[Optional[Dict[int, Logprob]]]] = None
class CompletionResponse(BaseModel):
id: str
object: str = "text_completion"
created: int
model: str
choices: List[CompletionResponseChoice]
usage: UsageInfo
class CompletionResponseStreamChoice(BaseModel):
index: int
text: str
logprobs: Optional[CompletionLogProbs] = None
finish_reason: Optional[str] = None
stop_reason: Optional[Union[int, str]] = Field(
default=None,
description=(
"The stop string or token id that caused the completion "
"to stop, None if the completion finished for some other reason "
"including encountering the EOS token"
),
)
class CompletionStreamResponse(BaseModel):
id: str
object: str
created: int
model: str
choices: List[CompletionResponseStreamChoice]
usage: Optional[UsageInfo] = Field(default=None)
class VLLMChute(ChutePack):
chat: Callable
completion: Callable
chat_stream: Callable
completion_stream: Callable
models: Callable
def build_vllm_chute(
username: str,
model_name: str,
node_selector: NodeSelector,
image: str | Image = VLLM,
tagline: str = "",
readme: str = "",
concurrency: int = 32,
engine_args: Dict[str, Any] = {},
revision: str = None,
):
if engine_args.get("revision"):
raise ValueError("revision is now a top-level argument to build_vllm_chute!")
if not revision:
from chutes.chute.template.helpers import get_current_hf_commit
suggested_commit = None
try:
suggested_commit = get_current_hf_commit(model_name)
except Exception:
...
suggestion = (
"Unable to fetch the current refs/heads/main commit from HF, please check the model name."
if not suggested_commit
else f"The current refs/heads/main commit is: {suggested_commit}"
)
raise ValueError(
f"You must specify revision= to properly lock a model to a given huggingface revision. {suggestion}"
)
chute = Chute(
username=username,
name=model_name,
tagline=tagline,
readme=readme,
image=image,
node_selector=node_selector,
concurrency=concurrency,
standard_template="vllm",
revision=revision,
)
# Semi-optimized defaults for code starts (but not overall perf once hot).
defaults = {}
for key, value in defaults.items():
if key not in engine_args:
engine_args[key] = value
# Minimal input schema with defaults.
class MinifiedMessage(BaseModel):
role: DefaultRole = DefaultRole.user
content: str = Field("")
class MinifiedStreamChatCompletion(BaseModel):
messages: List[MinifiedMessage] = [MinifiedMessage()]
temperature: float = Field(0.7)
seed: int = Field(42)
stream: bool = Field(True)
max_tokens: int = Field(1024)
model: str = Field(model_name)
class MinifiedChatCompletion(MinifiedStreamChatCompletion):
stream: bool = Field(False)
# Minimal completion input.
class MinifiedStreamCompletion(BaseModel):
prompt: str
temperature: float = Field(0.7)
seed: int = Field(42)
stream: bool = Field(True)
max_tokens: int = Field(1024)
model: str = Field(model_name)
class MinifiedCompletion(MinifiedStreamCompletion):
stream: bool = Field(False)
@chute.on_startup()
async def initialize_vllm(self):
nonlocal engine_args
nonlocal model_name
nonlocal image
# Imports here to avoid needing torch/vllm/etc. to just perform inference/build remotely.
import torch
import multiprocessing
from vllm import AsyncEngineArgs, AsyncLLMEngine
import vllm.entrypoints.openai.api_server as vllm_api_server
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
import vllm.version as vv
# Force download in initializer with some retries.
from huggingface_hub import snapshot_download
download_path = None
for attempt in range(5):
download_kwargs = {}
if self.revision:
download_kwargs["revision"] = self.revision
try:
print(f"Attempting to download {model_name} to cache...")
download_path = await asyncio.to_thread(
snapshot_download, repo_id=model_name, **download_kwargs
)
print(f"Successfully downloaded {model_name} to {download_path}")
break
except Exception as exc:
print(f"Failed downloading {model_name} {download_kwargs or ''}: {exc}")
await asyncio.sleep(60)
if not download_path:
raise Exception(f"Failed to download {model_name} after 5 attempts")
try:
from vllm.entrypoints.openai.serving_engine import BaseModelPath
except Exception:
from vllm.entrypoints.openai.serving_models import (
BaseModelPath,
OpenAIServingModels,
)
from vllm.entrypoints.openai.serving_tokenization import (
OpenAIServingTokenization,
)
# Reset torch.
torch.cuda.empty_cache()
torch.cuda.init()
torch.cuda.set_device(0)
multiprocessing.set_start_method("spawn", force=True)
# Tool args.
if chat_template := engine_args.pop("chat_template", None):
if len(chat_template) <= 1024 and os.path.exists(chat_template):
with open(chat_template) as infile:
chat_template = infile.read()
extra_args = dict(
tool_parser=engine_args.pop("tool_call_parser", None),
enable_auto_tools=engine_args.pop("enable_auto_tool_choice", False),
chat_template=chat_template,
chat_template_content_format=engine_args.pop("chat_template_content_format", None),
)
# Configure engine arguments
gpu_count = int(os.getenv("CUDA_DEVICE_COUNT", str(torch.cuda.device_count())))
engine_args = AsyncEngineArgs(
model=model_name,
tensor_parallel_size=gpu_count,
**engine_args,
)
# Initialize engine directly in the main process
self.engine = AsyncLLMEngine.from_engine_args(engine_args)
model_config = await self.engine.get_model_config()
base_model_paths = [
BaseModelPath(name=chute.name, model_path=chute.name),
]
self.include_router(vllm_api_server.router)
extra_token_args = {}
version_parts = vv.__version__.split(".")
old_vllm = False
if (
not vv.__version__.startswith("0.1.dev")
and int(version_parts[0]) == 0
and int(version_parts[1]) < 7
):
old_vllm = True
if old_vllm:
extra_args["lora_modules"] = []
extra_args["prompt_adapters"] = []
extra_token_args["lora_modules"] = []
extra_args["base_model_paths"] = base_model_paths
else:
extra_args["models"] = OpenAIServingModels(
engine_client=self.engine,
model_config=model_config,
base_model_paths=base_model_paths,
lora_modules=[],
)
extra_token_args.update(
{
"chat_template": extra_args.get("chat_template"),
"chat_template_content_format": extra_args.get("chat_template_content_format"),
}
)
vllm_api_server.chat = lambda s: OpenAIServingChat(
self.engine,
model_config=model_config,
response_role="assistant",
request_logger=None,
return_tokens_as_token_ids=True,
**extra_args,
)
vllm_api_server.completion = lambda s: OpenAIServingCompletion(
self.engine,
model_config=model_config,
request_logger=None,
return_tokens_as_token_ids=True,
**{
k: v
for k, v in extra_args.items()
if k
not in (
"chat_template",
"chat_template_content_format",
"tool_parser",
"enable_auto_tools",
)
},
)
models_arg = base_model_paths if old_vllm else extra_args["models"]
vllm_api_server.tokenization = lambda s: OpenAIServingTokenization(
self.engine,
model_config,
models_arg,
request_logger=None,
**extra_token_args,
)
self.state.openai_serving_tokenization = OpenAIServingTokenization(
self.engine,
model_config,
models_arg,
request_logger=None,
**extra_token_args,
)
setattr(self.state, "enable_server_load_tracking", False)
if not old_vllm:
self.state.openai_serving_models = extra_args["models"]
def _parse_stream_chunk(encoded_chunk):
chunk = encoded_chunk if isinstance(encoded_chunk, str) else encoded_chunk.decode()
if "data: {" in chunk:
return json.loads(chunk[6:])
return None
@chute.cord(
passthrough_path="/v1/chat/completions",
public_api_path="/v1/chat/completions",
method="POST",
passthrough=True,
stream=True,
input_schema=ChatCompletionRequest,
minimal_input_schema=MinifiedStreamChatCompletion,
)
async def chat_stream(encoded_chunk) -> ChatCompletionStreamResponse:
return _parse_stream_chunk(encoded_chunk)
@chute.cord(
passthrough_path="/v1/completions",
public_api_path="/v1/completions",
method="POST",
passthrough=True,
stream=True,
input_schema=CompletionRequest,
minimal_input_schema=MinifiedStreamCompletion,
)
async def completion_stream(encoded_chunk) -> CompletionStreamResponse:
return _parse_stream_chunk(encoded_chunk)
@chute.cord(
passthrough_path="/v1/chat/completions",
public_api_path="/v1/chat/completions",
method="POST",
passthrough=True,
input_schema=ChatCompletionRequest,
minimal_input_schema=MinifiedChatCompletion,
)
async def chat(data) -> ChatCompletionResponse:
return data
@chute.cord(
path="/do_tokenize",
passthrough_path="/tokenize",
public_api_path="/tokenize",
method="POST",
passthrough=True,
input_schema=TokenizeRequest,
minimal_input_schema=TokenizeRequest,
)
async def do_tokenize(data) -> TokenizeResponse:
return data
@chute.cord(
path="/do_detokenize",
passthrough_path="/detokenize",
public_api_path="/detokenize",
method="POST",
passthrough=True,
input_schema=DetokenizeRequest,
minimal_input_schema=DetokenizeRequest,
)
async def do_detokenize(data) -> DetokenizeResponse:
return data
@chute.cord(
passthrough_path="/v1/completions",
public_api_path="/v1/completions",
method="POST",
passthrough=True,
input_schema=CompletionRequest,
minimal_input_schema=MinifiedCompletion,
)
async def completion(data) -> CompletionResponse:
return data
@chute.cord(
passthrough_path="/v1/models",
public_api_path="/v1/models",
public_api_method="GET",
method="GET",
passthrough=True,
)
async def get_models(data):
return data
return VLLMChute(
chute=chute,
chat=chat,
chat_stream=chat_stream,
completion=completion,
completion_stream=completion_stream,
models=get_models,
)