Upload vllm_template_gptoss.py
Browse files- vllm_template_gptoss.py +540 -0
vllm_template_gptoss.py
ADDED
@@ -0,0 +1,540 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from enum import Enum
|
5 |
+
from pydantic import BaseModel, Field
|
6 |
+
from typing import Dict, Any, Callable, Literal, Optional, Union, List
|
7 |
+
from chutes.image import Image
|
8 |
+
from chutes.image.standard.vllm import VLLM
|
9 |
+
from chutes.chute import Chute, ChutePack, NodeSelector
|
10 |
+
|
11 |
+
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"
|
12 |
+
|
13 |
+
|
14 |
+
class DefaultRole(Enum):
|
15 |
+
user = "user"
|
16 |
+
assistant = "assistant"
|
17 |
+
|
18 |
+
|
19 |
+
class ChatMessage(BaseModel):
|
20 |
+
role: str
|
21 |
+
content: str
|
22 |
+
|
23 |
+
|
24 |
+
class Logprob(BaseModel):
|
25 |
+
logprob: float
|
26 |
+
rank: Optional[int] = None
|
27 |
+
decoded_token: Optional[str] = None
|
28 |
+
|
29 |
+
|
30 |
+
class ResponseFormat(BaseModel):
|
31 |
+
type: Literal["text", "json_object", "json_schema"]
|
32 |
+
json_schema: Optional[Dict] = None
|
33 |
+
|
34 |
+
|
35 |
+
class BaseRequest(BaseModel):
|
36 |
+
model: str
|
37 |
+
frequency_penalty: Optional[float] = 0.0
|
38 |
+
logit_bias: Optional[Dict[str, float]] = None
|
39 |
+
logprobs: Optional[bool] = False
|
40 |
+
top_logprobs: Optional[int] = 0
|
41 |
+
max_tokens: Optional[int] = None
|
42 |
+
presence_penalty: Optional[float] = 0.0
|
43 |
+
response_format: Optional[ResponseFormat] = None
|
44 |
+
seed: Optional[int] = Field(None, ge=0, le=9223372036854775807)
|
45 |
+
stop: Optional[Union[str, List[str]]] = Field(default_factory=list)
|
46 |
+
stream: Optional[bool] = False
|
47 |
+
temperature: Optional[float] = 0.7
|
48 |
+
top_p: Optional[float] = 1.0
|
49 |
+
best_of: Optional[int] = None
|
50 |
+
use_beam_search: bool = False
|
51 |
+
top_k: int = -1
|
52 |
+
min_p: float = 0.0
|
53 |
+
repetition_penalty: float = 1.0
|
54 |
+
length_penalty: float = 1.0
|
55 |
+
stop_token_ids: Optional[List[int]] = Field(default_factory=list)
|
56 |
+
include_stop_str_in_output: bool = False
|
57 |
+
ignore_eos: bool = False
|
58 |
+
min_tokens: int = 0
|
59 |
+
skip_special_tokens: bool = True
|
60 |
+
spaces_between_special_tokens: bool = True
|
61 |
+
prompt_logprobs: Optional[int] = None
|
62 |
+
|
63 |
+
|
64 |
+
class UsageInfo(BaseModel):
|
65 |
+
prompt_tokens: int = 0
|
66 |
+
total_tokens: int = 0
|
67 |
+
completion_tokens: Optional[int] = 0
|
68 |
+
|
69 |
+
|
70 |
+
class TokenizeRequest(BaseRequest):
|
71 |
+
model: str
|
72 |
+
prompt: str
|
73 |
+
add_special_tokens: bool
|
74 |
+
|
75 |
+
|
76 |
+
class DetokenizeRequest(BaseRequest):
|
77 |
+
model: str
|
78 |
+
tokens: List[int]
|
79 |
+
|
80 |
+
|
81 |
+
class ChatCompletionRequest(BaseRequest):
|
82 |
+
messages: List[ChatMessage]
|
83 |
+
|
84 |
+
|
85 |
+
class CompletionRequest(BaseRequest):
|
86 |
+
prompt: str
|
87 |
+
|
88 |
+
|
89 |
+
class ChatCompletionLogProb(BaseModel):
|
90 |
+
token: str
|
91 |
+
logprob: float = -9999.0
|
92 |
+
bytes: Optional[List[int]] = None
|
93 |
+
|
94 |
+
|
95 |
+
class ChatCompletionLogProbsContent(ChatCompletionLogProb):
|
96 |
+
top_logprobs: List[ChatCompletionLogProb] = Field(default_factory=list)
|
97 |
+
|
98 |
+
|
99 |
+
class ChatCompletionLogProbs(BaseModel):
|
100 |
+
content: Optional[List[ChatCompletionLogProbsContent]] = None
|
101 |
+
|
102 |
+
|
103 |
+
class ChatCompletionResponseChoice(BaseModel):
|
104 |
+
index: int
|
105 |
+
message: ChatMessage
|
106 |
+
logprobs: Optional[ChatCompletionLogProbs] = None
|
107 |
+
finish_reason: Optional[str] = "stop"
|
108 |
+
stop_reason: Optional[Union[int, str]] = None
|
109 |
+
|
110 |
+
|
111 |
+
class ChatCompletionResponse(BaseModel):
|
112 |
+
id: str
|
113 |
+
object: Literal["chat.completion"] = "chat.completion"
|
114 |
+
created: int
|
115 |
+
model: str
|
116 |
+
choices: List[ChatCompletionResponseChoice]
|
117 |
+
usage: UsageInfo
|
118 |
+
prompt_logprobs: Optional[List[Optional[Dict[int, Logprob]]]] = None
|
119 |
+
|
120 |
+
|
121 |
+
class TokenizeResponse(BaseRequest):
|
122 |
+
count: int
|
123 |
+
max_model_len: int
|
124 |
+
tokens: List[int]
|
125 |
+
|
126 |
+
|
127 |
+
class DetokenizeResponse(BaseRequest):
|
128 |
+
prompt: str
|
129 |
+
|
130 |
+
|
131 |
+
class DeltaMessage(BaseModel):
|
132 |
+
role: Optional[str] = None
|
133 |
+
content: Optional[str] = None
|
134 |
+
|
135 |
+
|
136 |
+
class ChatCompletionResponseStreamChoice(BaseModel):
|
137 |
+
index: int
|
138 |
+
delta: DeltaMessage
|
139 |
+
logprobs: Optional[ChatCompletionLogProbs] = None
|
140 |
+
finish_reason: Optional[str] = None
|
141 |
+
stop_reason: Optional[Union[int, str]] = None
|
142 |
+
|
143 |
+
|
144 |
+
class ChatCompletionStreamResponse(BaseModel):
|
145 |
+
id: str
|
146 |
+
object: Literal["chat.completion.chunk"] = "chat.completion.chunk"
|
147 |
+
created: int
|
148 |
+
model: str
|
149 |
+
choices: List[ChatCompletionResponseStreamChoice]
|
150 |
+
usage: Optional[UsageInfo] = Field(default=None)
|
151 |
+
|
152 |
+
|
153 |
+
class CompletionLogProbs(BaseModel):
|
154 |
+
text_offset: List[int] = Field(default_factory=list)
|
155 |
+
token_logprobs: List[Optional[float]] = Field(default_factory=list)
|
156 |
+
tokens: List[str] = Field(default_factory=list)
|
157 |
+
top_logprobs: List[Optional[Dict[str, float]]] = Field(default_factory=list)
|
158 |
+
|
159 |
+
|
160 |
+
class CompletionResponseChoice(BaseModel):
|
161 |
+
index: int
|
162 |
+
text: str
|
163 |
+
logprobs: Optional[CompletionLogProbs] = None
|
164 |
+
finish_reason: Optional[str] = None
|
165 |
+
stop_reason: Optional[Union[int, str]] = Field(
|
166 |
+
default=None,
|
167 |
+
description=(
|
168 |
+
"The stop string or token id that caused the completion "
|
169 |
+
"to stop, None if the completion finished for some other reason "
|
170 |
+
"including encountering the EOS token"
|
171 |
+
),
|
172 |
+
)
|
173 |
+
prompt_logprobs: Optional[List[Optional[Dict[int, Logprob]]]] = None
|
174 |
+
|
175 |
+
|
176 |
+
class CompletionResponse(BaseModel):
|
177 |
+
id: str
|
178 |
+
object: str = "text_completion"
|
179 |
+
created: int
|
180 |
+
model: str
|
181 |
+
choices: List[CompletionResponseChoice]
|
182 |
+
usage: UsageInfo
|
183 |
+
|
184 |
+
|
185 |
+
class CompletionResponseStreamChoice(BaseModel):
|
186 |
+
index: int
|
187 |
+
text: str
|
188 |
+
logprobs: Optional[CompletionLogProbs] = None
|
189 |
+
finish_reason: Optional[str] = None
|
190 |
+
stop_reason: Optional[Union[int, str]] = Field(
|
191 |
+
default=None,
|
192 |
+
description=(
|
193 |
+
"The stop string or token id that caused the completion "
|
194 |
+
"to stop, None if the completion finished for some other reason "
|
195 |
+
"including encountering the EOS token"
|
196 |
+
),
|
197 |
+
)
|
198 |
+
|
199 |
+
|
200 |
+
class CompletionStreamResponse(BaseModel):
|
201 |
+
id: str
|
202 |
+
object: str
|
203 |
+
created: int
|
204 |
+
model: str
|
205 |
+
choices: List[CompletionResponseStreamChoice]
|
206 |
+
usage: Optional[UsageInfo] = Field(default=None)
|
207 |
+
|
208 |
+
|
209 |
+
class VLLMChute(ChutePack):
|
210 |
+
chat: Callable
|
211 |
+
completion: Callable
|
212 |
+
chat_stream: Callable
|
213 |
+
completion_stream: Callable
|
214 |
+
models: Callable
|
215 |
+
|
216 |
+
|
217 |
+
def build_vllm_chute(
|
218 |
+
username: str,
|
219 |
+
model_name: str,
|
220 |
+
node_selector: NodeSelector,
|
221 |
+
image: str | Image = VLLM,
|
222 |
+
tagline: str = "",
|
223 |
+
readme: str = "",
|
224 |
+
concurrency: int = 32,
|
225 |
+
engine_args: Dict[str, Any] = {},
|
226 |
+
revision: str = None,
|
227 |
+
):
|
228 |
+
if engine_args.get("revision"):
|
229 |
+
raise ValueError("revision is now a top-level argument to build_vllm_chute!")
|
230 |
+
if not revision:
|
231 |
+
from chutes.chute.template.helpers import get_current_hf_commit
|
232 |
+
|
233 |
+
suggested_commit = None
|
234 |
+
try:
|
235 |
+
suggested_commit = get_current_hf_commit(model_name)
|
236 |
+
except Exception:
|
237 |
+
...
|
238 |
+
suggestion = (
|
239 |
+
"Unable to fetch the current refs/heads/main commit from HF, please check the model name."
|
240 |
+
if not suggested_commit
|
241 |
+
else f"The current refs/heads/main commit is: {suggested_commit}"
|
242 |
+
)
|
243 |
+
raise ValueError(
|
244 |
+
f"You must specify revision= to properly lock a model to a given huggingface revision. {suggestion}"
|
245 |
+
)
|
246 |
+
|
247 |
+
chute = Chute(
|
248 |
+
username=username,
|
249 |
+
name=model_name,
|
250 |
+
tagline=tagline,
|
251 |
+
readme=readme,
|
252 |
+
image=image,
|
253 |
+
node_selector=node_selector,
|
254 |
+
concurrency=concurrency,
|
255 |
+
standard_template="vllm",
|
256 |
+
revision=revision,
|
257 |
+
)
|
258 |
+
|
259 |
+
# Semi-optimized defaults for code starts (but not overall perf once hot).
|
260 |
+
defaults = {}
|
261 |
+
for key, value in defaults.items():
|
262 |
+
if key not in engine_args:
|
263 |
+
engine_args[key] = value
|
264 |
+
|
265 |
+
# Minimal input schema with defaults.
|
266 |
+
class MinifiedMessage(BaseModel):
|
267 |
+
role: DefaultRole = DefaultRole.user
|
268 |
+
content: str = Field("")
|
269 |
+
|
270 |
+
class MinifiedStreamChatCompletion(BaseModel):
|
271 |
+
messages: List[MinifiedMessage] = [MinifiedMessage()]
|
272 |
+
temperature: float = Field(0.7)
|
273 |
+
seed: int = Field(42)
|
274 |
+
stream: bool = Field(True)
|
275 |
+
max_tokens: int = Field(1024)
|
276 |
+
model: str = Field(model_name)
|
277 |
+
|
278 |
+
class MinifiedChatCompletion(MinifiedStreamChatCompletion):
|
279 |
+
stream: bool = Field(False)
|
280 |
+
|
281 |
+
# Minimal completion input.
|
282 |
+
class MinifiedStreamCompletion(BaseModel):
|
283 |
+
prompt: str
|
284 |
+
temperature: float = Field(0.7)
|
285 |
+
seed: int = Field(42)
|
286 |
+
stream: bool = Field(True)
|
287 |
+
max_tokens: int = Field(1024)
|
288 |
+
model: str = Field(model_name)
|
289 |
+
|
290 |
+
class MinifiedCompletion(MinifiedStreamCompletion):
|
291 |
+
stream: bool = Field(False)
|
292 |
+
|
293 |
+
@chute.on_startup()
|
294 |
+
async def initialize_vllm(self):
|
295 |
+
nonlocal engine_args
|
296 |
+
nonlocal model_name
|
297 |
+
nonlocal image
|
298 |
+
|
299 |
+
# Imports here to avoid needing torch/vllm/etc. to just perform inference/build remotely.
|
300 |
+
import torch
|
301 |
+
import multiprocessing
|
302 |
+
from vllm import AsyncEngineArgs, AsyncLLMEngine
|
303 |
+
import vllm.entrypoints.openai.api_server as vllm_api_server
|
304 |
+
from vllm.entrypoints.openai.serving_chat import OpenAIServingChat
|
305 |
+
from vllm.entrypoints.openai.serving_completion import OpenAIServingCompletion
|
306 |
+
import vllm.version as vv
|
307 |
+
|
308 |
+
# Force download in initializer with some retries.
|
309 |
+
from huggingface_hub import snapshot_download
|
310 |
+
|
311 |
+
download_path = None
|
312 |
+
for attempt in range(5):
|
313 |
+
download_kwargs = {}
|
314 |
+
if self.revision:
|
315 |
+
download_kwargs["revision"] = self.revision
|
316 |
+
try:
|
317 |
+
print(f"Attempting to download {model_name} to cache...")
|
318 |
+
download_path = await asyncio.to_thread(
|
319 |
+
snapshot_download, repo_id=model_name, **download_kwargs
|
320 |
+
)
|
321 |
+
print(f"Successfully downloaded {model_name} to {download_path}")
|
322 |
+
break
|
323 |
+
except Exception as exc:
|
324 |
+
print(f"Failed downloading {model_name} {download_kwargs or ''}: {exc}")
|
325 |
+
await asyncio.sleep(60)
|
326 |
+
if not download_path:
|
327 |
+
raise Exception(f"Failed to download {model_name} after 5 attempts")
|
328 |
+
|
329 |
+
try:
|
330 |
+
from vllm.entrypoints.openai.serving_engine import BaseModelPath
|
331 |
+
except Exception:
|
332 |
+
from vllm.entrypoints.openai.serving_models import (
|
333 |
+
BaseModelPath,
|
334 |
+
OpenAIServingModels,
|
335 |
+
)
|
336 |
+
from vllm.entrypoints.openai.serving_tokenization import (
|
337 |
+
OpenAIServingTokenization,
|
338 |
+
)
|
339 |
+
|
340 |
+
# Reset torch.
|
341 |
+
torch.cuda.empty_cache()
|
342 |
+
torch.cuda.init()
|
343 |
+
torch.cuda.set_device(0)
|
344 |
+
multiprocessing.set_start_method("spawn", force=True)
|
345 |
+
|
346 |
+
# Tool args.
|
347 |
+
if chat_template := engine_args.pop("chat_template", None):
|
348 |
+
if len(chat_template) <= 1024 and os.path.exists(chat_template):
|
349 |
+
with open(chat_template) as infile:
|
350 |
+
chat_template = infile.read()
|
351 |
+
extra_args = dict(
|
352 |
+
tool_parser=engine_args.pop("tool_call_parser", None),
|
353 |
+
enable_auto_tools=engine_args.pop("enable_auto_tool_choice", False),
|
354 |
+
chat_template=chat_template,
|
355 |
+
chat_template_content_format=engine_args.pop("chat_template_content_format", None),
|
356 |
+
)
|
357 |
+
|
358 |
+
# Configure engine arguments
|
359 |
+
gpu_count = int(os.getenv("CUDA_DEVICE_COUNT", str(torch.cuda.device_count())))
|
360 |
+
engine_args = AsyncEngineArgs(
|
361 |
+
model=model_name,
|
362 |
+
tensor_parallel_size=gpu_count,
|
363 |
+
**engine_args,
|
364 |
+
)
|
365 |
+
|
366 |
+
# Initialize engine directly in the main process
|
367 |
+
self.engine = AsyncLLMEngine.from_engine_args(engine_args)
|
368 |
+
model_config = await self.engine.get_model_config()
|
369 |
+
|
370 |
+
base_model_paths = [
|
371 |
+
BaseModelPath(name=chute.name, model_path=chute.name),
|
372 |
+
]
|
373 |
+
|
374 |
+
self.include_router(vllm_api_server.router)
|
375 |
+
extra_token_args = {}
|
376 |
+
version_parts = vv.__version__.split(".")
|
377 |
+
old_vllm = False
|
378 |
+
if (
|
379 |
+
not vv.__version__.startswith("0.1.dev")
|
380 |
+
and int(version_parts[0]) == 0
|
381 |
+
and int(version_parts[1]) < 7
|
382 |
+
):
|
383 |
+
old_vllm = True
|
384 |
+
if old_vllm:
|
385 |
+
extra_args["lora_modules"] = []
|
386 |
+
extra_args["prompt_adapters"] = []
|
387 |
+
extra_token_args["lora_modules"] = []
|
388 |
+
extra_args["base_model_paths"] = base_model_paths
|
389 |
+
else:
|
390 |
+
extra_args["models"] = OpenAIServingModels(
|
391 |
+
engine_client=self.engine,
|
392 |
+
model_config=model_config,
|
393 |
+
base_model_paths=base_model_paths,
|
394 |
+
lora_modules=[],
|
395 |
+
)
|
396 |
+
extra_token_args.update(
|
397 |
+
{
|
398 |
+
"chat_template": extra_args.get("chat_template"),
|
399 |
+
"chat_template_content_format": extra_args.get("chat_template_content_format"),
|
400 |
+
}
|
401 |
+
)
|
402 |
+
|
403 |
+
vllm_api_server.chat = lambda s: OpenAIServingChat(
|
404 |
+
self.engine,
|
405 |
+
model_config=model_config,
|
406 |
+
response_role="assistant",
|
407 |
+
request_logger=None,
|
408 |
+
return_tokens_as_token_ids=True,
|
409 |
+
**extra_args,
|
410 |
+
)
|
411 |
+
vllm_api_server.completion = lambda s: OpenAIServingCompletion(
|
412 |
+
self.engine,
|
413 |
+
model_config=model_config,
|
414 |
+
request_logger=None,
|
415 |
+
return_tokens_as_token_ids=True,
|
416 |
+
**{
|
417 |
+
k: v
|
418 |
+
for k, v in extra_args.items()
|
419 |
+
if k
|
420 |
+
not in (
|
421 |
+
"chat_template",
|
422 |
+
"chat_template_content_format",
|
423 |
+
"tool_parser",
|
424 |
+
"enable_auto_tools",
|
425 |
+
)
|
426 |
+
},
|
427 |
+
)
|
428 |
+
models_arg = base_model_paths if old_vllm else extra_args["models"]
|
429 |
+
vllm_api_server.tokenization = lambda s: OpenAIServingTokenization(
|
430 |
+
self.engine,
|
431 |
+
model_config,
|
432 |
+
models_arg,
|
433 |
+
request_logger=None,
|
434 |
+
**extra_token_args,
|
435 |
+
)
|
436 |
+
self.state.openai_serving_tokenization = OpenAIServingTokenization(
|
437 |
+
self.engine,
|
438 |
+
model_config,
|
439 |
+
models_arg,
|
440 |
+
request_logger=None,
|
441 |
+
**extra_token_args,
|
442 |
+
)
|
443 |
+
setattr(self.state, "enable_server_load_tracking", False)
|
444 |
+
if not old_vllm:
|
445 |
+
self.state.openai_serving_models = extra_args["models"]
|
446 |
+
|
447 |
+
def _parse_stream_chunk(encoded_chunk):
|
448 |
+
chunk = encoded_chunk if isinstance(encoded_chunk, str) else encoded_chunk.decode()
|
449 |
+
if "data: {" in chunk:
|
450 |
+
return json.loads(chunk[6:])
|
451 |
+
return None
|
452 |
+
|
453 |
+
@chute.cord(
|
454 |
+
passthrough_path="/v1/chat/completions",
|
455 |
+
public_api_path="/v1/chat/completions",
|
456 |
+
method="POST",
|
457 |
+
passthrough=True,
|
458 |
+
stream=True,
|
459 |
+
input_schema=ChatCompletionRequest,
|
460 |
+
minimal_input_schema=MinifiedStreamChatCompletion,
|
461 |
+
)
|
462 |
+
async def chat_stream(encoded_chunk) -> ChatCompletionStreamResponse:
|
463 |
+
return _parse_stream_chunk(encoded_chunk)
|
464 |
+
|
465 |
+
@chute.cord(
|
466 |
+
passthrough_path="/v1/completions",
|
467 |
+
public_api_path="/v1/completions",
|
468 |
+
method="POST",
|
469 |
+
passthrough=True,
|
470 |
+
stream=True,
|
471 |
+
input_schema=CompletionRequest,
|
472 |
+
minimal_input_schema=MinifiedStreamCompletion,
|
473 |
+
)
|
474 |
+
async def completion_stream(encoded_chunk) -> CompletionStreamResponse:
|
475 |
+
return _parse_stream_chunk(encoded_chunk)
|
476 |
+
|
477 |
+
@chute.cord(
|
478 |
+
passthrough_path="/v1/chat/completions",
|
479 |
+
public_api_path="/v1/chat/completions",
|
480 |
+
method="POST",
|
481 |
+
passthrough=True,
|
482 |
+
input_schema=ChatCompletionRequest,
|
483 |
+
minimal_input_schema=MinifiedChatCompletion,
|
484 |
+
)
|
485 |
+
async def chat(data) -> ChatCompletionResponse:
|
486 |
+
return data
|
487 |
+
|
488 |
+
@chute.cord(
|
489 |
+
path="/do_tokenize",
|
490 |
+
passthrough_path="/tokenize",
|
491 |
+
public_api_path="/tokenize",
|
492 |
+
method="POST",
|
493 |
+
passthrough=True,
|
494 |
+
input_schema=TokenizeRequest,
|
495 |
+
minimal_input_schema=TokenizeRequest,
|
496 |
+
)
|
497 |
+
async def do_tokenize(data) -> TokenizeResponse:
|
498 |
+
return data
|
499 |
+
|
500 |
+
@chute.cord(
|
501 |
+
path="/do_detokenize",
|
502 |
+
passthrough_path="/detokenize",
|
503 |
+
public_api_path="/detokenize",
|
504 |
+
method="POST",
|
505 |
+
passthrough=True,
|
506 |
+
input_schema=DetokenizeRequest,
|
507 |
+
minimal_input_schema=DetokenizeRequest,
|
508 |
+
)
|
509 |
+
async def do_detokenize(data) -> DetokenizeResponse:
|
510 |
+
return data
|
511 |
+
|
512 |
+
@chute.cord(
|
513 |
+
passthrough_path="/v1/completions",
|
514 |
+
public_api_path="/v1/completions",
|
515 |
+
method="POST",
|
516 |
+
passthrough=True,
|
517 |
+
input_schema=CompletionRequest,
|
518 |
+
minimal_input_schema=MinifiedCompletion,
|
519 |
+
)
|
520 |
+
async def completion(data) -> CompletionResponse:
|
521 |
+
return data
|
522 |
+
|
523 |
+
@chute.cord(
|
524 |
+
passthrough_path="/v1/models",
|
525 |
+
public_api_path="/v1/models",
|
526 |
+
public_api_method="GET",
|
527 |
+
method="GET",
|
528 |
+
passthrough=True,
|
529 |
+
)
|
530 |
+
async def get_models(data):
|
531 |
+
return data
|
532 |
+
|
533 |
+
return VLLMChute(
|
534 |
+
chute=chute,
|
535 |
+
chat=chat,
|
536 |
+
chat_stream=chat_stream,
|
537 |
+
completion=completion,
|
538 |
+
completion_stream=completion_stream,
|
539 |
+
models=get_models,
|
540 |
+
)
|