RussianVibe
Collection
A collection of neural networks for generating landscapes of Russia
•
4 items
•
Updated
•
1
Warning! This is an outdated version. Check out version 2.0
These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were fine-tuned on the 0x7o/RussianVibe-data dataset. You can find some example images in the following.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
import torch
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
pipe.load_lora_weights("0x7o/RussianVibe-XL-v1.0")
pipe.to("cuda")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
prompt = "The sun is setting through a window, casting a warm glow on the cityscape beyond. The sun casts a warm orange glow on the buildings in the distance, creating a beautiful and serene atmosphere."
image = pipe(prompt, num_inference_steps=30, guidance_scale=5.0, negative_prompt="bad quality, painting, art").images[0]
image.save("output.png")
Base model
stabilityai/stable-diffusion-xl-base-1.0