--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: openai/whisper-tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: eu split: test args: eu metrics: - name: Wer type: wer value: 33.15849163595123 --- # openai/whisper-tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7321 - Wer: 33.1585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.75e-05 - train_batch_size: 256 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0096 | 19.0 | 1000 | 0.5796 | 32.8952 | | 0.0011 | 38.0 | 2000 | 0.6522 | 32.2694 | | 0.0005 | 57.01 | 3000 | 0.6949 | 33.1403 | | 0.0003 | 76.01 | 4000 | 0.7217 | 33.0734 | | 0.0003 | 96.0 | 5000 | 0.7321 | 33.1585 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3