--- language: - gl license: apache-2.0 base_model: openai/whisper-large tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Large Galician results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_13_0 gl type: mozilla-foundation/common_voice_13_0 config: gl split: test args: gl metrics: - name: Wer type: wer value: 6.939845474613686 --- # Whisper Large Galician This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the mozilla-foundation/common_voice_13_0 gl dataset. It achieves the following results on the evaluation set: - Loss: 0.3605 - Wer: 6.9398 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.0126 | 4.01 | 1000 | 0.2128 | 8.3558 | | 0.0032 | 9.01 | 2000 | 0.2262 | 6.9416 | | 0.0022 | 14.01 | 3000 | 0.2528 | 7.1123 | | 0.0025 | 19.01 | 4000 | 0.2643 | 7.3641 | | 0.0015 | 24.01 | 5000 | 0.2596 | 7.3365 | | 0.0014 | 29.01 | 6000 | 0.2723 | 7.6366 | | 0.0008 | 34.01 | 7000 | 0.2778 | 7.6090 | | 0.0003 | 39.01 | 8000 | 0.2880 | 7.2261 | | 0.0004 | 44.01 | 9000 | 0.2920 | 7.6745 | | 0.0001 | 49.01 | 10000 | 0.2854 | 7.4089 | | 0.0 | 54.01 | 11000 | 0.3027 | 7.4365 | | 0.0 | 59.01 | 12000 | 0.3159 | 7.4055 | | 0.0 | 64.01 | 13000 | 0.3242 | 7.3693 | | 0.0 | 69.01 | 14000 | 0.3312 | 7.3072 | | 0.0 | 74.01 | 15000 | 0.3379 | 7.0226 | | 0.0 | 79.01 | 16000 | 0.3442 | 7.0019 | | 0.0 | 84.01 | 17000 | 0.3500 | 6.9933 | | 0.0 | 89.01 | 18000 | 0.3550 | 6.9605 | | 0.0 | 94.01 | 19000 | 0.3589 | 6.9467 | | 0.0 | 99.01 | 20000 | 0.3605 | 6.9398 | ### Framework versions - Transformers 4.33.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3 ## Citation If you use these models in your research, please cite: ```bibtex @misc{dezuazo2025whisperlmimprovingasrmodels, title={Whisper-LM: Improving ASR Models with Language Models for Low-Resource Languages}, author={Xabier de Zuazo and Eva Navas and Ibon Saratxaga and Inma Hernáez Rioja}, year={2025}, eprint={2503.23542}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2503.23542}, } ``` Please, check the related paper preprint in [arXiv:2503.23542](https://arxiv.org/abs/2503.23542) for more details. ## Licensing This model is available under the [Apache-2.0 License](https://www.apache.org/licenses/LICENSE-2.0). You are free to use, modify, and distribute this model as long as you credit the original creators.