--- library_name: peft tags: - axolotl - generated_from_trainer base_model: NousResearch/Llama-2-7b-hf model-index: - name: MathLlama-7b results: [] --- Edit - Retraining model messed up the output. Maybe cz of my chat template. I will fine tune and update this. Stay Tuned :) axolotl version: `0.3.0` ```yaml base_model: NousResearch/Llama-2-7b-hf model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true hub_model_id: MathLlama-7b load_in_8bit: false load_in_4bit: true strict: false datasets: - path: zorooo/Eval_Math_Derivatives type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./qlora-out-2 adapter: qlora lora_model_dir: sequence_len: 2048 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: axolotl_run_1_math_llama wandb_entity: wandb_watch: wandb_name: math_llama_run2 wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 5 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" unk_token: "" ```
# MathLlama-7b This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1702 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.1242 | 0.04 | 1 | 0.1574 | | 0.1265 | 0.27 | 7 | 0.1573 | | 0.1644 | 0.54 | 14 | 0.1574 | | 0.1213 | 0.82 | 21 | 0.1566 | | 0.1219 | 1.06 | 28 | 0.1560 | | 0.111 | 1.33 | 35 | 0.1577 | | 0.1289 | 1.6 | 42 | 0.1562 | | 0.1241 | 1.87 | 49 | 0.1551 | | 0.1254 | 2.12 | 56 | 0.1592 | | 0.1376 | 2.39 | 63 | 0.1646 | | 0.132 | 2.66 | 70 | 0.1611 | | 0.1165 | 2.93 | 77 | 0.1568 | | 0.1047 | 3.18 | 84 | 0.1698 | | 0.0918 | 3.46 | 91 | 0.1717 | | 0.1022 | 3.73 | 98 | 0.1677 | | 0.1136 | 4.0 | 105 | 0.1661 | | 0.0856 | 4.25 | 112 | 0.1733 | | 0.0834 | 4.52 | 119 | 0.1702 | ### Framework versions - PEFT 0.7.2.dev0 - Transformers 4.37.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0