|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import BaseOutput, is_scipy_available, logging |
|
from diffusers.schedulers.scheduling_utils import SchedulerMixin |
|
|
|
|
|
if is_scipy_available(): |
|
import scipy.stats |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def lm_correct(prev_noise, noise_pred, lamb, kappa): |
|
noise_pred = noise_pred.to(torch.float32) |
|
if prev_noise is not None: |
|
noise_pred_ema = kappa * prev_noise + (1 - kappa) * noise_pred |
|
else: |
|
noise_pred_ema = noise_pred |
|
|
|
|
|
norm_squared = (noise_pred * noise_pred).sum(dim=(1, 2)) |
|
|
|
norm_squared = norm_squared.unsqueeze(1).unsqueeze(2) |
|
part1 = noise_pred |
|
|
|
norm_squared_ema = (noise_pred_ema * noise_pred_ema).sum(dim=(1, 2)) |
|
norm_squared_ema = norm_squared_ema.unsqueeze(1).unsqueeze(2) |
|
inner_product = torch.sum(noise_pred * noise_pred_ema, dim=(1, 2)) |
|
mp = noise_pred_ema * inner_product.unsqueeze(-1).unsqueeze(-1) |
|
part2 = mp / (lamb + norm_squared_ema) |
|
|
|
inversed_pred = part1 - part2 |
|
|
|
|
|
norm = torch.sqrt(norm_squared) |
|
norm_squared_lm = (inversed_pred * inversed_pred).sum(dim=(1, 2)) |
|
norm_squared_lm = norm_squared_lm.unsqueeze(1).unsqueeze(2) |
|
norm_lm = torch.sqrt(norm_squared_lm) |
|
inversed_pred = inversed_pred * norm / norm_lm |
|
|
|
return inversed_pred |
|
|
|
@dataclass |
|
class FlowMatchEulerDiscreteSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's `step` function output. |
|
|
|
Args: |
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
""" |
|
|
|
prev_sample: torch.FloatTensor |
|
|
|
|
|
class FlowMatchEulerDiscreteLMScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
Euler scheduler. |
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
|
|
Args: |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. |
|
shift (`float`, defaults to 1.0): |
|
The shift value for the timestep schedule. |
|
use_dynamic_shifting (`bool`, defaults to False): |
|
Whether to apply timestep shifting on-the-fly based on the image resolution. |
|
base_shift (`float`, defaults to 0.5): |
|
Value to stabilize image generation. Increasing `base_shift` reduces variation and image is more consistent |
|
with desired output. |
|
max_shift (`float`, defaults to 1.15): |
|
Value change allowed to latent vectors. Increasing `max_shift` encourages more variation and image may be |
|
more exaggerated or stylized. |
|
base_image_seq_len (`int`, defaults to 256): |
|
The base image sequence length. |
|
max_image_seq_len (`int`, defaults to 4096): |
|
The maximum image sequence length. |
|
invert_sigmas (`bool`, defaults to False): |
|
Whether to invert the sigmas. |
|
shift_terminal (`float`, defaults to None): |
|
The end value of the shifted timestep schedule. |
|
use_karras_sigmas (`bool`, defaults to False): |
|
Whether to use Karras sigmas for step sizes in the noise schedule during sampling. |
|
use_exponential_sigmas (`bool`, defaults to False): |
|
Whether to use exponential sigmas for step sizes in the noise schedule during sampling. |
|
use_beta_sigmas (`bool`, defaults to False): |
|
Whether to use beta sigmas for step sizes in the noise schedule during sampling. |
|
time_shift_type (`str`, defaults to "exponential"): |
|
The type of dynamic resolution-dependent timestep shifting to apply. Either "exponential" or "linear". |
|
stochastic_sampling (`bool`, defaults to False): |
|
Whether to use stochastic sampling. |
|
""" |
|
|
|
_compatibles = [] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
shift: float = 1.0, |
|
use_dynamic_shifting: bool = False, |
|
base_shift: Optional[float] = 0.5, |
|
max_shift: Optional[float] = 1.15, |
|
base_image_seq_len: Optional[int] = 256, |
|
max_image_seq_len: Optional[int] = 4096, |
|
invert_sigmas: bool = False, |
|
shift_terminal: Optional[float] = None, |
|
use_karras_sigmas: Optional[bool] = False, |
|
use_exponential_sigmas: Optional[bool] = False, |
|
use_beta_sigmas: Optional[bool] = False, |
|
time_shift_type: str = "exponential", |
|
stochastic_sampling: bool = False, |
|
lamb: float = 1.0, |
|
lm: bool = True, |
|
kappa: float = 0.0, |
|
): |
|
if self.config.use_beta_sigmas and not is_scipy_available(): |
|
raise ImportError("Make sure to install scipy if you want to use beta sigmas.") |
|
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1: |
|
raise ValueError( |
|
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used." |
|
) |
|
if time_shift_type not in {"exponential", "linear"}: |
|
raise ValueError("`time_shift_type` must either be 'exponential' or 'linear'.") |
|
|
|
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy() |
|
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32) |
|
|
|
sigmas = timesteps / num_train_timesteps |
|
if not use_dynamic_shifting: |
|
|
|
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) |
|
|
|
self.timesteps = sigmas * num_train_timesteps |
|
self.lamb = lamb |
|
self.lm = lm |
|
self.kappa = kappa |
|
self.prev_noise = None |
|
self._step_index = None |
|
self._begin_index = None |
|
|
|
self._shift = shift |
|
|
|
self.sigmas = sigmas.to("cpu") |
|
self.sigma_min = self.sigmas[-1].item() |
|
self.sigma_max = self.sigmas[0].item() |
|
|
|
@property |
|
def shift(self): |
|
""" |
|
The value used for shifting. |
|
""" |
|
return self._shift |
|
|
|
@property |
|
def step_index(self): |
|
""" |
|
The index counter for current timestep. It will increase 1 after each scheduler step. |
|
""" |
|
return self._step_index |
|
|
|
@property |
|
def begin_index(self): |
|
""" |
|
The index for the first timestep. It should be set from pipeline with `set_begin_index` method. |
|
""" |
|
return self._begin_index |
|
|
|
|
|
def set_begin_index(self, begin_index: int = 0): |
|
""" |
|
Sets the begin index for the scheduler. This function should be run from pipeline before the inference. |
|
|
|
Args: |
|
begin_index (`int`): |
|
The begin index for the scheduler. |
|
""" |
|
self._begin_index = begin_index |
|
|
|
def set_shift(self, shift: float): |
|
self._shift = shift |
|
|
|
def scale_noise( |
|
self, |
|
sample: torch.FloatTensor, |
|
timestep: Union[float, torch.FloatTensor], |
|
noise: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
""" |
|
Forward process in flow-matching |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): |
|
The input sample. |
|
timestep (`int`, *optional*): |
|
The current timestep in the diffusion chain. |
|
|
|
Returns: |
|
`torch.FloatTensor`: |
|
A scaled input sample. |
|
""" |
|
|
|
sigmas = self.sigmas.to(device=sample.device, dtype=sample.dtype) |
|
|
|
if sample.device.type == "mps" and torch.is_floating_point(timestep): |
|
|
|
schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32) |
|
timestep = timestep.to(sample.device, dtype=torch.float32) |
|
else: |
|
schedule_timesteps = self.timesteps.to(sample.device) |
|
timestep = timestep.to(sample.device) |
|
|
|
|
|
if self.begin_index is None: |
|
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timestep] |
|
elif self.step_index is not None: |
|
|
|
step_indices = [self.step_index] * timestep.shape[0] |
|
else: |
|
|
|
step_indices = [self.begin_index] * timestep.shape[0] |
|
|
|
sigma = sigmas[step_indices].flatten() |
|
while len(sigma.shape) < len(sample.shape): |
|
sigma = sigma.unsqueeze(-1) |
|
|
|
sample = sigma * noise + (1.0 - sigma) * sample |
|
|
|
return sample |
|
|
|
def _sigma_to_t(self, sigma): |
|
return sigma * self.config.num_train_timesteps |
|
|
|
def time_shift(self, mu: float, sigma: float, t: torch.Tensor): |
|
if self.config.time_shift_type == "exponential": |
|
return self._time_shift_exponential(mu, sigma, t) |
|
elif self.config.time_shift_type == "linear": |
|
return self._time_shift_linear(mu, sigma, t) |
|
|
|
def stretch_shift_to_terminal(self, t: torch.Tensor) -> torch.Tensor: |
|
r""" |
|
Stretches and shifts the timestep schedule to ensure it terminates at the configured `shift_terminal` config |
|
value. |
|
|
|
Reference: |
|
https://github.com/Lightricks/LTX-Video/blob/a01a171f8fe3d99dce2728d60a73fecf4d4238ae/ltx_video/schedulers/rf.py#L51 |
|
|
|
Args: |
|
t (`torch.Tensor`): |
|
A tensor of timesteps to be stretched and shifted. |
|
|
|
Returns: |
|
`torch.Tensor`: |
|
A tensor of adjusted timesteps such that the final value equals `self.config.shift_terminal`. |
|
""" |
|
one_minus_z = 1 - t |
|
scale_factor = one_minus_z[-1] / (1 - self.config.shift_terminal) |
|
stretched_t = 1 - (one_minus_z / scale_factor) |
|
return stretched_t |
|
|
|
def set_timesteps( |
|
self, |
|
num_inference_steps: Optional[int] = None, |
|
device: Union[str, torch.device] = None, |
|
sigmas: Optional[List[float]] = None, |
|
mu: Optional[float] = None, |
|
timesteps: Optional[List[float]] = None, |
|
): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference). |
|
|
|
Args: |
|
num_inference_steps (`int`, *optional*): |
|
The number of diffusion steps used when generating samples with a pre-trained model. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
sigmas (`List[float]`, *optional*): |
|
Custom values for sigmas to be used for each diffusion step. If `None`, the sigmas are computed |
|
automatically. |
|
mu (`float`, *optional*): |
|
Determines the amount of shifting applied to sigmas when performing resolution-dependent timestep |
|
shifting. |
|
timesteps (`List[float]`, *optional*): |
|
Custom values for timesteps to be used for each diffusion step. If `None`, the timesteps are computed |
|
automatically. |
|
""" |
|
if self.config.use_dynamic_shifting and mu is None: |
|
raise ValueError("`mu` must be passed when `use_dynamic_shifting` is set to be `True`") |
|
|
|
if sigmas is not None and timesteps is not None: |
|
if len(sigmas) != len(timesteps): |
|
raise ValueError("`sigmas` and `timesteps` should have the same length") |
|
|
|
if num_inference_steps is not None: |
|
if (sigmas is not None and len(sigmas) != num_inference_steps) or ( |
|
timesteps is not None and len(timesteps) != num_inference_steps |
|
): |
|
raise ValueError( |
|
"`sigmas` and `timesteps` should have the same length as num_inference_steps, if `num_inference_steps` is provided" |
|
) |
|
else: |
|
num_inference_steps = len(sigmas) if sigmas is not None else len(timesteps) |
|
|
|
self.num_inference_steps = num_inference_steps |
|
|
|
|
|
is_timesteps_provided = timesteps is not None |
|
|
|
if is_timesteps_provided: |
|
timesteps = np.array(timesteps).astype(np.float32) |
|
|
|
if sigmas is None: |
|
if timesteps is None: |
|
timesteps = np.linspace( |
|
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps |
|
) |
|
sigmas = timesteps / self.config.num_train_timesteps |
|
else: |
|
sigmas = np.array(sigmas).astype(np.float32) |
|
num_inference_steps = len(sigmas) |
|
|
|
|
|
|
|
if self.config.use_dynamic_shifting: |
|
sigmas = self.time_shift(mu, 1.0, sigmas) |
|
else: |
|
sigmas = self.shift * sigmas / (1 + (self.shift - 1) * sigmas) |
|
|
|
|
|
if self.config.shift_terminal: |
|
sigmas = self.stretch_shift_to_terminal(sigmas) |
|
|
|
|
|
if self.config.use_karras_sigmas: |
|
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) |
|
elif self.config.use_exponential_sigmas: |
|
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps) |
|
elif self.config.use_beta_sigmas: |
|
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps) |
|
|
|
|
|
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) |
|
if not is_timesteps_provided: |
|
timesteps = sigmas * self.config.num_train_timesteps |
|
else: |
|
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32, device=device) |
|
|
|
|
|
|
|
|
|
if self.config.invert_sigmas: |
|
sigmas = 1.0 - sigmas |
|
timesteps = sigmas * self.config.num_train_timesteps |
|
sigmas = torch.cat([sigmas, torch.ones(1, device=sigmas.device)]) |
|
else: |
|
sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) |
|
|
|
self.timesteps = timesteps |
|
self.sigmas = sigmas |
|
self._step_index = None |
|
self._begin_index = None |
|
|
|
def index_for_timestep(self, timestep, schedule_timesteps=None): |
|
if schedule_timesteps is None: |
|
schedule_timesteps = self.timesteps |
|
|
|
indices = (schedule_timesteps == timestep).nonzero() |
|
|
|
|
|
|
|
|
|
|
|
pos = 1 if len(indices) > 1 else 0 |
|
|
|
return indices[pos].item() |
|
|
|
def _init_step_index(self, timestep): |
|
if self.begin_index is None: |
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
self._step_index = self.index_for_timestep(timestep) |
|
else: |
|
self._step_index = self._begin_index |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: Union[float, torch.FloatTensor], |
|
sample: torch.FloatTensor, |
|
s_churn: float = 0.0, |
|
s_tmin: float = 0.0, |
|
s_tmax: float = float("inf"), |
|
s_noise: float = 1.0, |
|
generator: Optional[torch.Generator] = None, |
|
per_token_timesteps: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`float`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
s_churn (`float`): |
|
s_tmin (`float`): |
|
s_tmax (`float`): |
|
s_noise (`float`, defaults to 1.0): |
|
Scaling factor for noise added to the sample. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
per_token_timesteps (`torch.Tensor`, *optional*): |
|
The timesteps for each token in the sample. |
|
return_dict (`bool`): |
|
Whether or not to return a |
|
[`~schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteSchedulerOutput`] or tuple. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, |
|
[`~schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteSchedulerOutput`] is returned, |
|
otherwise a tuple is returned where the first element is the sample tensor. |
|
""" |
|
|
|
if ( |
|
isinstance(timestep, int) |
|
or isinstance(timestep, torch.IntTensor) |
|
or isinstance(timestep, torch.LongTensor) |
|
): |
|
raise ValueError( |
|
( |
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" |
|
" `FlowMatchEulerDiscreteScheduler.step()` is not supported. Make sure to pass" |
|
" one of the `scheduler.timesteps` as a timestep." |
|
), |
|
) |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
|
|
sample = sample.to(torch.float32) |
|
|
|
if per_token_timesteps is not None: |
|
per_token_sigmas = per_token_timesteps / self.config.num_train_timesteps |
|
|
|
sigmas = self.sigmas[:, None, None] |
|
lower_mask = sigmas < per_token_sigmas[None] - 1e-6 |
|
lower_sigmas = lower_mask * sigmas |
|
lower_sigmas, _ = lower_sigmas.max(dim=0) |
|
|
|
current_sigma = per_token_sigmas[..., None] |
|
next_sigma = lower_sigmas[..., None] |
|
dt = current_sigma - next_sigma |
|
else: |
|
sigma_idx = self.step_index |
|
sigma = self.sigmas[sigma_idx] |
|
sigma_next = self.sigmas[sigma_idx + 1] |
|
|
|
current_sigma = sigma |
|
next_sigma = sigma_next |
|
dt = sigma_next - sigma |
|
|
|
if self.config.stochastic_sampling: |
|
x0 = sample - current_sigma * lm_correct(prev_noise=self.prev_noise, noise_pred = model_output, lamb = self.lamb, kappa=self.kappa) |
|
noise = torch.randn_like(sample) |
|
prev_sample = (1.0 - next_sigma) * x0 + next_sigma * noise |
|
self.prev_noise = model_output |
|
else: |
|
prev_sample = sample + dt * lm_correct(prev_noise=self.prev_noise, noise_pred = model_output, lamb = self.lamb, kappa=self.kappa) |
|
self.prev_noise = model_output |
|
|
|
self._step_index += 1 |
|
if per_token_timesteps is None: |
|
|
|
prev_sample = prev_sample.to(model_output.dtype) |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample) |
|
|
|
|
|
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor: |
|
"""Constructs the noise schedule of Karras et al. (2022).""" |
|
|
|
|
|
|
|
if hasattr(self.config, "sigma_min"): |
|
sigma_min = self.config.sigma_min |
|
else: |
|
sigma_min = None |
|
|
|
if hasattr(self.config, "sigma_max"): |
|
sigma_max = self.config.sigma_max |
|
else: |
|
sigma_max = None |
|
|
|
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() |
|
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() |
|
|
|
rho = 7.0 |
|
ramp = np.linspace(0, 1, num_inference_steps) |
|
min_inv_rho = sigma_min ** (1 / rho) |
|
max_inv_rho = sigma_max ** (1 / rho) |
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho |
|
return sigmas |
|
|
|
|
|
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor: |
|
"""Constructs an exponential noise schedule.""" |
|
|
|
|
|
|
|
if hasattr(self.config, "sigma_min"): |
|
sigma_min = self.config.sigma_min |
|
else: |
|
sigma_min = None |
|
|
|
if hasattr(self.config, "sigma_max"): |
|
sigma_max = self.config.sigma_max |
|
else: |
|
sigma_max = None |
|
|
|
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() |
|
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() |
|
|
|
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps)) |
|
return sigmas |
|
|
|
|
|
def _convert_to_beta( |
|
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6 |
|
) -> torch.Tensor: |
|
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)""" |
|
|
|
|
|
|
|
if hasattr(self.config, "sigma_min"): |
|
sigma_min = self.config.sigma_min |
|
else: |
|
sigma_min = None |
|
|
|
if hasattr(self.config, "sigma_max"): |
|
sigma_max = self.config.sigma_max |
|
else: |
|
sigma_max = None |
|
|
|
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() |
|
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() |
|
|
|
sigmas = np.array( |
|
[ |
|
sigma_min + (ppf * (sigma_max - sigma_min)) |
|
for ppf in [ |
|
scipy.stats.beta.ppf(timestep, alpha, beta) |
|
for timestep in 1 - np.linspace(0, 1, num_inference_steps) |
|
] |
|
] |
|
) |
|
return sigmas |
|
|
|
def _time_shift_exponential(self, mu, sigma, t): |
|
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) |
|
|
|
def _time_shift_linear(self, mu, sigma, t): |
|
return mu / (mu + (1 / t - 1) ** sigma) |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|