--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: email-phishing-detector results: [] --- # email-phishing-detector This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0351 - Accuracy: 0.9947 - Precision: 0.9953 - Recall: 0.9944 - F1: 0.9949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0363 | 1.0 | 4125 | 0.0341 | 0.9913 | 0.9961 | 0.9871 | 0.9916 | | 0.0155 | 2.0 | 8250 | 0.0292 | 0.9935 | 0.9945 | 0.9930 | 0.9938 | | 0.0024 | 3.0 | 12375 | 0.0351 | 0.9947 | 0.9953 | 0.9944 | 0.9949 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1