zhouyik commited on
Commit
032e687
·
verified ·
1 Parent(s): 99b71de

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +669 -0
  2. .gitignore +126 -0
  3. OpenGVLab/InternVL2-2B/.gitattributes +38 -0
  4. OpenGVLab/InternVL2-2B/README.md +632 -0
  5. OpenGVLab/InternVL2-2B/added_tokens.json +11 -0
  6. OpenGVLab/InternVL2-2B/config.json +143 -0
  7. OpenGVLab/InternVL2-2B/configuration_intern_vit.py +120 -0
  8. OpenGVLab/InternVL2-2B/configuration_internlm2.py +150 -0
  9. OpenGVLab/InternVL2-2B/configuration_internvl_chat.py +96 -0
  10. OpenGVLab/InternVL2-2B/conversation.py +391 -0
  11. OpenGVLab/InternVL2-2B/examples/image1.jpg +0 -0
  12. OpenGVLab/InternVL2-2B/examples/image2.jpg +3 -0
  13. OpenGVLab/InternVL2-2B/examples/red-panda.mp4 +3 -0
  14. OpenGVLab/InternVL2-2B/generation_config.json +8 -0
  15. OpenGVLab/InternVL2-2B/model.safetensors +3 -0
  16. OpenGVLab/InternVL2-2B/modeling_intern_vit.py +430 -0
  17. OpenGVLab/InternVL2-2B/modeling_internlm2.py +1415 -0
  18. OpenGVLab/InternVL2-2B/modeling_internvl_chat.py +349 -0
  19. OpenGVLab/InternVL2-2B/preprocessor_config.json +19 -0
  20. OpenGVLab/InternVL2-2B/special_tokens_map.json +47 -0
  21. OpenGVLab/InternVL2-2B/tokenization_internlm2.py +235 -0
  22. OpenGVLab/InternVL2-2B/tokenization_internlm2_fast.py +211 -0
  23. OpenGVLab/InternVL2-2B/tokenizer.model +3 -0
  24. OpenGVLab/InternVL2-2B/tokenizer_config.json +179 -0
  25. OpenGVLab/InternVL2-4B/.gitattributes +36 -0
  26. OpenGVLab/InternVL2-4B/README.md +617 -0
  27. OpenGVLab/InternVL2-4B/added_tokens.json +22 -0
  28. OpenGVLab/InternVL2-4B/config.json +246 -0
  29. OpenGVLab/InternVL2-4B/configuration_intern_vit.py +120 -0
  30. OpenGVLab/InternVL2-4B/configuration_internvl_chat.py +96 -0
  31. OpenGVLab/InternVL2-4B/configuration_phi3.py +211 -0
  32. OpenGVLab/InternVL2-4B/conversation.py +391 -0
  33. OpenGVLab/InternVL2-4B/examples/image1.jpg +0 -0
  34. OpenGVLab/InternVL2-4B/examples/image2.jpg +3 -0
  35. OpenGVLab/InternVL2-4B/examples/red-panda.mp4 +3 -0
  36. OpenGVLab/InternVL2-4B/generation_config.json +9 -0
  37. OpenGVLab/InternVL2-4B/model-00001-of-00002.safetensors +3 -0
  38. OpenGVLab/InternVL2-4B/model-00002-of-00002.safetensors +3 -0
  39. OpenGVLab/InternVL2-4B/model.safetensors.index.json +548 -0
  40. OpenGVLab/InternVL2-4B/modeling_intern_vit.py +430 -0
  41. OpenGVLab/InternVL2-4B/modeling_internvl_chat.py +349 -0
  42. OpenGVLab/InternVL2-4B/modeling_phi3.py +1610 -0
  43. OpenGVLab/InternVL2-4B/preprocessor_config.json +19 -0
  44. OpenGVLab/InternVL2-4B/special_tokens_map.json +41 -0
  45. OpenGVLab/InternVL2-4B/tokenizer.model +3 -0
  46. OpenGVLab/InternVL2-4B/tokenizer_config.json +213 -0
  47. OpenGVLab/InternVL2_5-2B/.gitattributes +36 -0
  48. OpenGVLab/InternVL2_5-2B/README.md +674 -0
  49. OpenGVLab/InternVL2_5-2B/added_tokens.json +11 -0
  50. OpenGVLab/InternVL2_5-2B/config.json +145 -0
.gitattributes CHANGED
@@ -33,3 +33,672 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ OpenGVLab/InternVL2-2B/examples/image2.jpg filter=lfs diff=lfs merge=lfs -text
37
+ OpenGVLab/InternVL2-2B/examples/red-panda.mp4 filter=lfs diff=lfs merge=lfs -text
38
+ OpenGVLab/InternVL2-4B/examples/image2.jpg filter=lfs diff=lfs merge=lfs -text
39
+ OpenGVLab/InternVL2-4B/examples/red-panda.mp4 filter=lfs diff=lfs merge=lfs -text
40
+ OpenGVLab/InternVL2_5-2B/examples/image2.jpg filter=lfs diff=lfs merge=lfs -text
41
+ OpenGVLab/InternVL2_5-2B/examples/red-panda.mp4 filter=lfs diff=lfs merge=lfs -text
42
+ assets/view.mp4 filter=lfs diff=lfs merge=lfs -text
43
+ projects/omg_llava/test.jpg filter=lfs diff=lfs merge=lfs -text
44
+ third_parts/APE/.asset/ape.png filter=lfs diff=lfs merge=lfs -text
45
+ third_parts/APE/.asset/demo.png filter=lfs diff=lfs merge=lfs -text
46
+ third_parts/APE/.asset/example_1.png filter=lfs diff=lfs merge=lfs -text
47
+ third_parts/APE/.asset/framework.png filter=lfs diff=lfs merge=lfs -text
48
+ third_parts/APE/.asset/head.png filter=lfs diff=lfs merge=lfs -text
49
+ third_parts/APE/.asset/radar.png filter=lfs diff=lfs merge=lfs -text
50
+ third_parts/APE/demo/examples/MatrixRevolutionForZion.jpg filter=lfs diff=lfs merge=lfs -text
51
+ third_parts/APE/demo/examples/SolvayConference1927.jpg filter=lfs diff=lfs merge=lfs -text
52
+ third_parts/APE/demo/examples/Terminator3.jpg filter=lfs diff=lfs merge=lfs -text
53
+ third_parts/APE/demo/examples/Totoro01.png filter=lfs diff=lfs merge=lfs -text
54
+ third_parts/APE/demo/examples/Transformers.webp filter=lfs diff=lfs merge=lfs -text
55
+ third_parts/APE/detrex/assets/detr_arch.png filter=lfs diff=lfs merge=lfs -text
56
+ third_parts/APE/detrex/assets/detrex_logo.png filter=lfs diff=lfs merge=lfs -text
57
+ third_parts/APE/detrex/assets/logo_2.png filter=lfs diff=lfs merge=lfs -text
58
+ third_parts/APE/detrex/docs/source/tutorials/assets/demo_output.jpg filter=lfs diff=lfs merge=lfs -text
59
+ third_parts/APE/detrex/docs/source/tutorials/assets/dino_prediction_demo.jpg filter=lfs diff=lfs merge=lfs -text
60
+ third_parts/APE/detrex/projects/conditional_detr/assets/attention-maps.png filter=lfs diff=lfs merge=lfs -text
61
+ third_parts/APE/detrex/projects/dab_deformable_detr/assets/dab_detr_overall.png filter=lfs diff=lfs merge=lfs -text
62
+ third_parts/APE/detrex/projects/dab_detr/assets/dab_detr_overall.png filter=lfs diff=lfs merge=lfs -text
63
+ third_parts/APE/detrex/projects/deformable_detr/assets/deformable_detr.png filter=lfs diff=lfs merge=lfs -text
64
+ third_parts/APE/detrex/projects/deta/assets/deta.png filter=lfs diff=lfs merge=lfs -text
65
+ third_parts/APE/detrex/projects/detr/assets/DETR.png filter=lfs diff=lfs merge=lfs -text
66
+ third_parts/APE/detrex/projects/dino/assets/dino_arch.png filter=lfs diff=lfs merge=lfs -text
67
+ third_parts/APE/detrex/projects/dino_eva/assets/dino_arch.png filter=lfs diff=lfs merge=lfs -text
68
+ third_parts/APE/detrex/projects/dn_deformable_detr/assets/dn_detr_arch.png filter=lfs diff=lfs merge=lfs -text
69
+ third_parts/APE/detrex/projects/dn_detr/assets/dn_detr_arch.png filter=lfs diff=lfs merge=lfs -text
70
+ third_parts/APE/detrex/projects/group_detr/assets/group_detr_arch.png filter=lfs diff=lfs merge=lfs -text
71
+ third_parts/APE/detrex/projects/h_deformable_detr/assets/h_detr_arch.png filter=lfs diff=lfs merge=lfs -text
72
+ third_parts/APE/detrex/projects/maskdino/assets/framework.jpg filter=lfs diff=lfs merge=lfs -text
73
+ third_parts/APE/detrex/projects/maskdino/assets/instance.png filter=lfs diff=lfs merge=lfs -text
74
+ third_parts/APE/detrex/projects/maskdino/assets/panoptic.png filter=lfs diff=lfs merge=lfs -text
75
+ third_parts/APE/detrex/projects/maskdino/assets/semantic.png filter=lfs diff=lfs merge=lfs -text
76
+ third_parts/APE/detrex/projects/maskdino/assets/sota.png filter=lfs diff=lfs merge=lfs -text
77
+ third_parts/APE/detrex/projects/pnp_detr/assets/PnP-DETR.png filter=lfs diff=lfs merge=lfs -text
78
+ third_parts/detrex/assets/detr_arch.png filter=lfs diff=lfs merge=lfs -text
79
+ third_parts/detrex/assets/detrex_logo.png filter=lfs diff=lfs merge=lfs -text
80
+ third_parts/detrex/assets/logo_2.png filter=lfs diff=lfs merge=lfs -text
81
+ third_parts/detrex/docs/source/tutorials/assets/demo_output.jpg filter=lfs diff=lfs merge=lfs -text
82
+ third_parts/detrex/docs/source/tutorials/assets/dino_prediction_demo.jpg filter=lfs diff=lfs merge=lfs -text
83
+ third_parts/detrex/projects/conditional_detr/assets/attention-maps.png filter=lfs diff=lfs merge=lfs -text
84
+ third_parts/detrex/projects/dab_deformable_detr/assets/dab_detr_overall.png filter=lfs diff=lfs merge=lfs -text
85
+ third_parts/detrex/projects/dab_detr/assets/dab_detr_overall.png filter=lfs diff=lfs merge=lfs -text
86
+ third_parts/detrex/projects/deformable_detr/assets/deformable_detr.png filter=lfs diff=lfs merge=lfs -text
87
+ third_parts/detrex/projects/deta/assets/deta.png filter=lfs diff=lfs merge=lfs -text
88
+ third_parts/detrex/projects/detr/assets/DETR.png filter=lfs diff=lfs merge=lfs -text
89
+ third_parts/detrex/projects/dino/assets/dino_arch.png filter=lfs diff=lfs merge=lfs -text
90
+ third_parts/detrex/projects/dino_eva/assets/dino_arch.png filter=lfs diff=lfs merge=lfs -text
91
+ third_parts/detrex/projects/dn_deformable_detr/assets/dn_detr_arch.png filter=lfs diff=lfs merge=lfs -text
92
+ third_parts/detrex/projects/dn_detr/assets/dn_detr_arch.png filter=lfs diff=lfs merge=lfs -text
93
+ third_parts/detrex/projects/group_detr/assets/group_detr_arch.png filter=lfs diff=lfs merge=lfs -text
94
+ third_parts/detrex/projects/h_deformable_detr/assets/h_detr_arch.png filter=lfs diff=lfs merge=lfs -text
95
+ third_parts/detrex/projects/maskdino/assets/framework.jpg filter=lfs diff=lfs merge=lfs -text
96
+ third_parts/detrex/projects/maskdino/assets/instance.png filter=lfs diff=lfs merge=lfs -text
97
+ third_parts/detrex/projects/maskdino/assets/panoptic.png filter=lfs diff=lfs merge=lfs -text
98
+ third_parts/detrex/projects/maskdino/assets/semantic.png filter=lfs diff=lfs merge=lfs -text
99
+ third_parts/detrex/projects/maskdino/assets/sota.png filter=lfs diff=lfs merge=lfs -text
100
+ third_parts/detrex/projects/pnp_detr/assets/PnP-DETR.png filter=lfs diff=lfs merge=lfs -text
101
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11188.jpg filter=lfs diff=lfs merge=lfs -text
102
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11189.jpg filter=lfs diff=lfs merge=lfs -text
103
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11190.jpg filter=lfs diff=lfs merge=lfs -text
104
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11191.jpg filter=lfs diff=lfs merge=lfs -text
105
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11192.jpg filter=lfs diff=lfs merge=lfs -text
106
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11193.jpg filter=lfs diff=lfs merge=lfs -text
107
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11194.jpg filter=lfs diff=lfs merge=lfs -text
108
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11195.jpg filter=lfs diff=lfs merge=lfs -text
109
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11196.jpg filter=lfs diff=lfs merge=lfs -text
110
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11197.jpg filter=lfs diff=lfs merge=lfs -text
111
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11198.jpg filter=lfs diff=lfs merge=lfs -text
112
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11199.jpg filter=lfs diff=lfs merge=lfs -text
113
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11200.jpg filter=lfs diff=lfs merge=lfs -text
114
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11201.jpg filter=lfs diff=lfs merge=lfs -text
115
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11202.jpg filter=lfs diff=lfs merge=lfs -text
116
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11203.jpg filter=lfs diff=lfs merge=lfs -text
117
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11204.jpg filter=lfs diff=lfs merge=lfs -text
118
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11205.jpg filter=lfs diff=lfs merge=lfs -text
119
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11206.jpg filter=lfs diff=lfs merge=lfs -text
120
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11207.jpg filter=lfs diff=lfs merge=lfs -text
121
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11208.jpg filter=lfs diff=lfs merge=lfs -text
122
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11209.jpg filter=lfs diff=lfs merge=lfs -text
123
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11210.jpg filter=lfs diff=lfs merge=lfs -text
124
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11212.jpg filter=lfs diff=lfs merge=lfs -text
125
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11213.jpg filter=lfs diff=lfs merge=lfs -text
126
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11214.jpg filter=lfs diff=lfs merge=lfs -text
127
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11215.jpg filter=lfs diff=lfs merge=lfs -text
128
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11216.jpg filter=lfs diff=lfs merge=lfs -text
129
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11217.jpg filter=lfs diff=lfs merge=lfs -text
130
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11218.jpg filter=lfs diff=lfs merge=lfs -text
131
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11219.jpg filter=lfs diff=lfs merge=lfs -text
132
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11220.jpg filter=lfs diff=lfs merge=lfs -text
133
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11221.jpg filter=lfs diff=lfs merge=lfs -text
134
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11222.jpg filter=lfs diff=lfs merge=lfs -text
135
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11223.jpg filter=lfs diff=lfs merge=lfs -text
136
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11224.jpg filter=lfs diff=lfs merge=lfs -text
137
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11225.jpg filter=lfs diff=lfs merge=lfs -text
138
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11226.jpg filter=lfs diff=lfs merge=lfs -text
139
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11227.jpg filter=lfs diff=lfs merge=lfs -text
140
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11228.jpg filter=lfs diff=lfs merge=lfs -text
141
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11229.jpg filter=lfs diff=lfs merge=lfs -text
142
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11230.jpg filter=lfs diff=lfs merge=lfs -text
143
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11231.jpg filter=lfs diff=lfs merge=lfs -text
144
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11232.jpg filter=lfs diff=lfs merge=lfs -text
145
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11233.jpg filter=lfs diff=lfs merge=lfs -text
146
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11234.jpg filter=lfs diff=lfs merge=lfs -text
147
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11235.jpg filter=lfs diff=lfs merge=lfs -text
148
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11236.jpg filter=lfs diff=lfs merge=lfs -text
149
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11237.jpg filter=lfs diff=lfs merge=lfs -text
150
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11238.jpg filter=lfs diff=lfs merge=lfs -text
151
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11239.jpg filter=lfs diff=lfs merge=lfs -text
152
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11240.jpg filter=lfs diff=lfs merge=lfs -text
153
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11241.jpg filter=lfs diff=lfs merge=lfs -text
154
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11242.jpg filter=lfs diff=lfs merge=lfs -text
155
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11243.jpg filter=lfs diff=lfs merge=lfs -text
156
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11244.jpg filter=lfs diff=lfs merge=lfs -text
157
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11245.jpg filter=lfs diff=lfs merge=lfs -text
158
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11246.jpg filter=lfs diff=lfs merge=lfs -text
159
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11247.jpg filter=lfs diff=lfs merge=lfs -text
160
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11248.jpg filter=lfs diff=lfs merge=lfs -text
161
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11249.jpg filter=lfs diff=lfs merge=lfs -text
162
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11250.jpg filter=lfs diff=lfs merge=lfs -text
163
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_11251.jpg filter=lfs diff=lfs merge=lfs -text
164
+ third_parts/zhouyik/zt_any_visual_prompt/final_out/sa_1556660.jpg filter=lfs diff=lfs merge=lfs -text
165
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0115/sa_10293442.jpg filter=lfs diff=lfs merge=lfs -text
166
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0115/sa_1556660.jpg filter=lfs diff=lfs merge=lfs -text
167
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0115/sa_2826217.jpg filter=lfs diff=lfs merge=lfs -text
168
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0115/sa_3242171.jpg filter=lfs diff=lfs merge=lfs -text
169
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0115/sa_3451147.jpg filter=lfs diff=lfs merge=lfs -text
170
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0115/sa_3534642.jpg filter=lfs diff=lfs merge=lfs -text
171
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0115/sa_3691529.jpg filter=lfs diff=lfs merge=lfs -text
172
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0115/sa_5587588.jpg filter=lfs diff=lfs merge=lfs -text
173
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0115/sa_6333772.jpg filter=lfs diff=lfs merge=lfs -text
174
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0115/sa_6360934.jpg filter=lfs diff=lfs merge=lfs -text
175
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0115/sa_7799885.jpg filter=lfs diff=lfs merge=lfs -text
176
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0115/sa_7945480.jpg filter=lfs diff=lfs merge=lfs -text
177
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0115/sa_7963505.jpg filter=lfs diff=lfs merge=lfs -text
178
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0115/sa_8536722.jpg filter=lfs diff=lfs merge=lfs -text
179
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0115/sa_9673939.jpg filter=lfs diff=lfs merge=lfs -text
180
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0115/sa_9684593.jpg filter=lfs diff=lfs merge=lfs -text
181
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0115/yt_0001.jpg filter=lfs diff=lfs merge=lfs -text
182
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0115/yt_0002.jpg filter=lfs diff=lfs merge=lfs -text
183
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0115/yt_0003.jpg filter=lfs diff=lfs merge=lfs -text
184
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0116/sa_10293442.jpg filter=lfs diff=lfs merge=lfs -text
185
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0116/sa_1556660.jpg filter=lfs diff=lfs merge=lfs -text
186
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0116/sa_2826217.jpg filter=lfs diff=lfs merge=lfs -text
187
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0116/sa_3242171.jpg filter=lfs diff=lfs merge=lfs -text
188
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0116/sa_3451147.jpg filter=lfs diff=lfs merge=lfs -text
189
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0116/sa_3534642.jpg filter=lfs diff=lfs merge=lfs -text
190
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0116/sa_3691529.jpg filter=lfs diff=lfs merge=lfs -text
191
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0116/sa_5587588.jpg filter=lfs diff=lfs merge=lfs -text
192
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0116/sa_6333772.jpg filter=lfs diff=lfs merge=lfs -text
193
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0116/sa_6360934.jpg filter=lfs diff=lfs merge=lfs -text
194
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0116/sa_7799885.jpg filter=lfs diff=lfs merge=lfs -text
195
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0116/sa_7945480.jpg filter=lfs diff=lfs merge=lfs -text
196
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0116/sa_7963505.jpg filter=lfs diff=lfs merge=lfs -text
197
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0116/sa_8536722.jpg filter=lfs diff=lfs merge=lfs -text
198
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0116/sa_9673939.jpg filter=lfs diff=lfs merge=lfs -text
199
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0116/sa_9684593.jpg filter=lfs diff=lfs merge=lfs -text
200
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0116/yt_0001.jpg filter=lfs diff=lfs merge=lfs -text
201
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0116/yt_0002.jpg filter=lfs diff=lfs merge=lfs -text
202
+ third_parts/zhouyik/zt_any_visual_prompt/final_out_0116/yt_0003.jpg filter=lfs diff=lfs merge=lfs -text
203
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11188.jpg filter=lfs diff=lfs merge=lfs -text
204
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11189.jpg filter=lfs diff=lfs merge=lfs -text
205
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11190.jpg filter=lfs diff=lfs merge=lfs -text
206
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11191.jpg filter=lfs diff=lfs merge=lfs -text
207
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11192.jpg filter=lfs diff=lfs merge=lfs -text
208
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11193.jpg filter=lfs diff=lfs merge=lfs -text
209
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11194.jpg filter=lfs diff=lfs merge=lfs -text
210
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11195.jpg filter=lfs diff=lfs merge=lfs -text
211
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11196.jpg filter=lfs diff=lfs merge=lfs -text
212
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11197.jpg filter=lfs diff=lfs merge=lfs -text
213
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11198.jpg filter=lfs diff=lfs merge=lfs -text
214
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11199.jpg filter=lfs diff=lfs merge=lfs -text
215
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11200.jpg filter=lfs diff=lfs merge=lfs -text
216
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11201.jpg filter=lfs diff=lfs merge=lfs -text
217
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11202.jpg filter=lfs diff=lfs merge=lfs -text
218
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11203.jpg filter=lfs diff=lfs merge=lfs -text
219
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11204.jpg filter=lfs diff=lfs merge=lfs -text
220
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11205.jpg filter=lfs diff=lfs merge=lfs -text
221
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11206.jpg filter=lfs diff=lfs merge=lfs -text
222
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11207.jpg filter=lfs diff=lfs merge=lfs -text
223
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11208.jpg filter=lfs diff=lfs merge=lfs -text
224
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11209.jpg filter=lfs diff=lfs merge=lfs -text
225
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11210.jpg filter=lfs diff=lfs merge=lfs -text
226
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11211.jpg filter=lfs diff=lfs merge=lfs -text
227
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11212.jpg filter=lfs diff=lfs merge=lfs -text
228
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11213.jpg filter=lfs diff=lfs merge=lfs -text
229
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11214.jpg filter=lfs diff=lfs merge=lfs -text
230
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11215.jpg filter=lfs diff=lfs merge=lfs -text
231
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11216.jpg filter=lfs diff=lfs merge=lfs -text
232
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11217.jpg filter=lfs diff=lfs merge=lfs -text
233
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11218.jpg filter=lfs diff=lfs merge=lfs -text
234
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11219.jpg filter=lfs diff=lfs merge=lfs -text
235
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11220.jpg filter=lfs diff=lfs merge=lfs -text
236
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11221.jpg filter=lfs diff=lfs merge=lfs -text
237
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11222.jpg filter=lfs diff=lfs merge=lfs -text
238
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11223.jpg filter=lfs diff=lfs merge=lfs -text
239
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11224.jpg filter=lfs diff=lfs merge=lfs -text
240
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11225.jpg filter=lfs diff=lfs merge=lfs -text
241
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11226.jpg filter=lfs diff=lfs merge=lfs -text
242
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11227.jpg filter=lfs diff=lfs merge=lfs -text
243
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11228.jpg filter=lfs diff=lfs merge=lfs -text
244
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11229.jpg filter=lfs diff=lfs merge=lfs -text
245
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11230.jpg filter=lfs diff=lfs merge=lfs -text
246
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11231.jpg filter=lfs diff=lfs merge=lfs -text
247
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11232.jpg filter=lfs diff=lfs merge=lfs -text
248
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11233.jpg filter=lfs diff=lfs merge=lfs -text
249
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11234.jpg filter=lfs diff=lfs merge=lfs -text
250
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11235.jpg filter=lfs diff=lfs merge=lfs -text
251
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11236.jpg filter=lfs diff=lfs merge=lfs -text
252
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11237.jpg filter=lfs diff=lfs merge=lfs -text
253
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11238.jpg filter=lfs diff=lfs merge=lfs -text
254
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11239.jpg filter=lfs diff=lfs merge=lfs -text
255
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11240.jpg filter=lfs diff=lfs merge=lfs -text
256
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11241.jpg filter=lfs diff=lfs merge=lfs -text
257
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11242.jpg filter=lfs diff=lfs merge=lfs -text
258
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11243.jpg filter=lfs diff=lfs merge=lfs -text
259
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11244.jpg filter=lfs diff=lfs merge=lfs -text
260
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11245.jpg filter=lfs diff=lfs merge=lfs -text
261
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11246.jpg filter=lfs diff=lfs merge=lfs -text
262
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11247.jpg filter=lfs diff=lfs merge=lfs -text
263
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11248.jpg filter=lfs diff=lfs merge=lfs -text
264
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11249.jpg filter=lfs diff=lfs merge=lfs -text
265
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11250.jpg filter=lfs diff=lfs merge=lfs -text
266
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11251.jpg filter=lfs diff=lfs merge=lfs -text
267
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11252.jpg filter=lfs diff=lfs merge=lfs -text
268
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11253.jpg filter=lfs diff=lfs merge=lfs -text
269
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11254.jpg filter=lfs diff=lfs merge=lfs -text
270
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11255.jpg filter=lfs diff=lfs merge=lfs -text
271
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11256.jpg filter=lfs diff=lfs merge=lfs -text
272
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11257.jpg filter=lfs diff=lfs merge=lfs -text
273
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11258.jpg filter=lfs diff=lfs merge=lfs -text
274
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11259.jpg filter=lfs diff=lfs merge=lfs -text
275
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11260.jpg filter=lfs diff=lfs merge=lfs -text
276
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11261.jpg filter=lfs diff=lfs merge=lfs -text
277
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11262.jpg filter=lfs diff=lfs merge=lfs -text
278
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11263.jpg filter=lfs diff=lfs merge=lfs -text
279
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11264.jpg filter=lfs diff=lfs merge=lfs -text
280
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11265.jpg filter=lfs diff=lfs merge=lfs -text
281
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11266.jpg filter=lfs diff=lfs merge=lfs -text
282
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11267.jpg filter=lfs diff=lfs merge=lfs -text
283
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11268.jpg filter=lfs diff=lfs merge=lfs -text
284
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11269.jpg filter=lfs diff=lfs merge=lfs -text
285
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11270.jpg filter=lfs diff=lfs merge=lfs -text
286
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11271.jpg filter=lfs diff=lfs merge=lfs -text
287
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11272.jpg filter=lfs diff=lfs merge=lfs -text
288
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11273.jpg filter=lfs diff=lfs merge=lfs -text
289
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11274.jpg filter=lfs diff=lfs merge=lfs -text
290
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11275.jpg filter=lfs diff=lfs merge=lfs -text
291
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11276.jpg filter=lfs diff=lfs merge=lfs -text
292
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11277.jpg filter=lfs diff=lfs merge=lfs -text
293
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11278.jpg filter=lfs diff=lfs merge=lfs -text
294
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11279.jpg filter=lfs diff=lfs merge=lfs -text
295
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11280.jpg filter=lfs diff=lfs merge=lfs -text
296
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11281.jpg filter=lfs diff=lfs merge=lfs -text
297
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11282.jpg filter=lfs diff=lfs merge=lfs -text
298
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11283.jpg filter=lfs diff=lfs merge=lfs -text
299
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11284.jpg filter=lfs diff=lfs merge=lfs -text
300
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11285.jpg filter=lfs diff=lfs merge=lfs -text
301
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11286.jpg filter=lfs diff=lfs merge=lfs -text
302
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11287.jpg filter=lfs diff=lfs merge=lfs -text
303
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11288.jpg filter=lfs diff=lfs merge=lfs -text
304
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11289.jpg filter=lfs diff=lfs merge=lfs -text
305
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11290.jpg filter=lfs diff=lfs merge=lfs -text
306
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11291.jpg filter=lfs diff=lfs merge=lfs -text
307
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11292.jpg filter=lfs diff=lfs merge=lfs -text
308
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11293.jpg filter=lfs diff=lfs merge=lfs -text
309
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11294.jpg filter=lfs diff=lfs merge=lfs -text
310
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11295.jpg filter=lfs diff=lfs merge=lfs -text
311
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11296.jpg filter=lfs diff=lfs merge=lfs -text
312
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11297.jpg filter=lfs diff=lfs merge=lfs -text
313
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11298.jpg filter=lfs diff=lfs merge=lfs -text
314
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11299.jpg filter=lfs diff=lfs merge=lfs -text
315
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11300.jpg filter=lfs diff=lfs merge=lfs -text
316
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11301.jpg filter=lfs diff=lfs merge=lfs -text
317
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11302.jpg filter=lfs diff=lfs merge=lfs -text
318
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11303.jpg filter=lfs diff=lfs merge=lfs -text
319
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11304.jpg filter=lfs diff=lfs merge=lfs -text
320
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11305.jpg filter=lfs diff=lfs merge=lfs -text
321
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11306.jpg filter=lfs diff=lfs merge=lfs -text
322
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11307.jpg filter=lfs diff=lfs merge=lfs -text
323
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11308.jpg filter=lfs diff=lfs merge=lfs -text
324
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11309.jpg filter=lfs diff=lfs merge=lfs -text
325
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11310.jpg filter=lfs diff=lfs merge=lfs -text
326
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11311.jpg filter=lfs diff=lfs merge=lfs -text
327
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11312.jpg filter=lfs diff=lfs merge=lfs -text
328
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11313.jpg filter=lfs diff=lfs merge=lfs -text
329
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11314.jpg filter=lfs diff=lfs merge=lfs -text
330
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11315.jpg filter=lfs diff=lfs merge=lfs -text
331
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11316.jpg filter=lfs diff=lfs merge=lfs -text
332
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11317.jpg filter=lfs diff=lfs merge=lfs -text
333
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11318.jpg filter=lfs diff=lfs merge=lfs -text
334
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11319.jpg filter=lfs diff=lfs merge=lfs -text
335
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11320.jpg filter=lfs diff=lfs merge=lfs -text
336
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11321.jpg filter=lfs diff=lfs merge=lfs -text
337
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11322.jpg filter=lfs diff=lfs merge=lfs -text
338
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11323.jpg filter=lfs diff=lfs merge=lfs -text
339
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11324.jpg filter=lfs diff=lfs merge=lfs -text
340
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11325.jpg filter=lfs diff=lfs merge=lfs -text
341
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11326.jpg filter=lfs diff=lfs merge=lfs -text
342
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11327.jpg filter=lfs diff=lfs merge=lfs -text
343
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11328.jpg filter=lfs diff=lfs merge=lfs -text
344
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11329.jpg filter=lfs diff=lfs merge=lfs -text
345
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11330.jpg filter=lfs diff=lfs merge=lfs -text
346
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11331.jpg filter=lfs diff=lfs merge=lfs -text
347
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11332.jpg filter=lfs diff=lfs merge=lfs -text
348
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11333.jpg filter=lfs diff=lfs merge=lfs -text
349
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11334.jpg filter=lfs diff=lfs merge=lfs -text
350
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11335.jpg filter=lfs diff=lfs merge=lfs -text
351
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11336.jpg filter=lfs diff=lfs merge=lfs -text
352
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11337.jpg filter=lfs diff=lfs merge=lfs -text
353
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11338.jpg filter=lfs diff=lfs merge=lfs -text
354
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11339.jpg filter=lfs diff=lfs merge=lfs -text
355
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11340.jpg filter=lfs diff=lfs merge=lfs -text
356
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11341.jpg filter=lfs diff=lfs merge=lfs -text
357
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11342.jpg filter=lfs diff=lfs merge=lfs -text
358
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11343.jpg filter=lfs diff=lfs merge=lfs -text
359
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11344.jpg filter=lfs diff=lfs merge=lfs -text
360
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11345.jpg filter=lfs diff=lfs merge=lfs -text
361
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11346.jpg filter=lfs diff=lfs merge=lfs -text
362
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11347.jpg filter=lfs diff=lfs merge=lfs -text
363
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11348.jpg filter=lfs diff=lfs merge=lfs -text
364
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11349.jpg filter=lfs diff=lfs merge=lfs -text
365
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11350.jpg filter=lfs diff=lfs merge=lfs -text
366
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11351.jpg filter=lfs diff=lfs merge=lfs -text
367
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11352.jpg filter=lfs diff=lfs merge=lfs -text
368
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11353.jpg filter=lfs diff=lfs merge=lfs -text
369
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11354.jpg filter=lfs diff=lfs merge=lfs -text
370
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11355.jpg filter=lfs diff=lfs merge=lfs -text
371
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11356.jpg filter=lfs diff=lfs merge=lfs -text
372
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11357.jpg filter=lfs diff=lfs merge=lfs -text
373
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11358.jpg filter=lfs diff=lfs merge=lfs -text
374
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11359.jpg filter=lfs diff=lfs merge=lfs -text
375
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11360.jpg filter=lfs diff=lfs merge=lfs -text
376
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11361.jpg filter=lfs diff=lfs merge=lfs -text
377
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11362.jpg filter=lfs diff=lfs merge=lfs -text
378
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11363.jpg filter=lfs diff=lfs merge=lfs -text
379
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11364.jpg filter=lfs diff=lfs merge=lfs -text
380
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11365.jpg filter=lfs diff=lfs merge=lfs -text
381
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11366.jpg filter=lfs diff=lfs merge=lfs -text
382
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11367.jpg filter=lfs diff=lfs merge=lfs -text
383
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11368.jpg filter=lfs diff=lfs merge=lfs -text
384
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11369.jpg filter=lfs diff=lfs merge=lfs -text
385
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11370.jpg filter=lfs diff=lfs merge=lfs -text
386
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11371.jpg filter=lfs diff=lfs merge=lfs -text
387
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11372.jpg filter=lfs diff=lfs merge=lfs -text
388
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11373.jpg filter=lfs diff=lfs merge=lfs -text
389
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11374.jpg filter=lfs diff=lfs merge=lfs -text
390
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11375.jpg filter=lfs diff=lfs merge=lfs -text
391
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11376.jpg filter=lfs diff=lfs merge=lfs -text
392
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11377.jpg filter=lfs diff=lfs merge=lfs -text
393
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11378.jpg filter=lfs diff=lfs merge=lfs -text
394
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11379.jpg filter=lfs diff=lfs merge=lfs -text
395
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11380.jpg filter=lfs diff=lfs merge=lfs -text
396
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11381.jpg filter=lfs diff=lfs merge=lfs -text
397
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11382.jpg filter=lfs diff=lfs merge=lfs -text
398
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11383.jpg filter=lfs diff=lfs merge=lfs -text
399
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11384.jpg filter=lfs diff=lfs merge=lfs -text
400
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11385.jpg filter=lfs diff=lfs merge=lfs -text
401
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11386.jpg filter=lfs diff=lfs merge=lfs -text
402
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11387.jpg filter=lfs diff=lfs merge=lfs -text
403
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11388.jpg filter=lfs diff=lfs merge=lfs -text
404
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11389.jpg filter=lfs diff=lfs merge=lfs -text
405
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11390.jpg filter=lfs diff=lfs merge=lfs -text
406
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11391.jpg filter=lfs diff=lfs merge=lfs -text
407
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11392.jpg filter=lfs diff=lfs merge=lfs -text
408
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11393.jpg filter=lfs diff=lfs merge=lfs -text
409
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11394.jpg filter=lfs diff=lfs merge=lfs -text
410
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11395.jpg filter=lfs diff=lfs merge=lfs -text
411
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11396.jpg filter=lfs diff=lfs merge=lfs -text
412
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11397.jpg filter=lfs diff=lfs merge=lfs -text
413
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11398.jpg filter=lfs diff=lfs merge=lfs -text
414
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11399.jpg filter=lfs diff=lfs merge=lfs -text
415
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11400.jpg filter=lfs diff=lfs merge=lfs -text
416
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11401.jpg filter=lfs diff=lfs merge=lfs -text
417
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11402.jpg filter=lfs diff=lfs merge=lfs -text
418
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11403.jpg filter=lfs diff=lfs merge=lfs -text
419
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11404.jpg filter=lfs diff=lfs merge=lfs -text
420
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11405.jpg filter=lfs diff=lfs merge=lfs -text
421
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11406.jpg filter=lfs diff=lfs merge=lfs -text
422
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11408.jpg filter=lfs diff=lfs merge=lfs -text
423
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11409.jpg filter=lfs diff=lfs merge=lfs -text
424
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11410.jpg filter=lfs diff=lfs merge=lfs -text
425
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11411.jpg filter=lfs diff=lfs merge=lfs -text
426
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11412.jpg filter=lfs diff=lfs merge=lfs -text
427
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11413.jpg filter=lfs diff=lfs merge=lfs -text
428
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11414.jpg filter=lfs diff=lfs merge=lfs -text
429
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11415.jpg filter=lfs diff=lfs merge=lfs -text
430
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11416.jpg filter=lfs diff=lfs merge=lfs -text
431
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11417.jpg filter=lfs diff=lfs merge=lfs -text
432
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11418.jpg filter=lfs diff=lfs merge=lfs -text
433
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11419.jpg filter=lfs diff=lfs merge=lfs -text
434
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11420.jpg filter=lfs diff=lfs merge=lfs -text
435
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11421.jpg filter=lfs diff=lfs merge=lfs -text
436
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11422.jpg filter=lfs diff=lfs merge=lfs -text
437
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11423.jpg filter=lfs diff=lfs merge=lfs -text
438
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11424.jpg filter=lfs diff=lfs merge=lfs -text
439
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11425.jpg filter=lfs diff=lfs merge=lfs -text
440
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11426.jpg filter=lfs diff=lfs merge=lfs -text
441
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11427.jpg filter=lfs diff=lfs merge=lfs -text
442
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11428.jpg filter=lfs diff=lfs merge=lfs -text
443
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11429.jpg filter=lfs diff=lfs merge=lfs -text
444
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11430.jpg filter=lfs diff=lfs merge=lfs -text
445
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11431.jpg filter=lfs diff=lfs merge=lfs -text
446
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11432.jpg filter=lfs diff=lfs merge=lfs -text
447
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11433.jpg filter=lfs diff=lfs merge=lfs -text
448
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11434.jpg filter=lfs diff=lfs merge=lfs -text
449
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11435.jpg filter=lfs diff=lfs merge=lfs -text
450
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11436.jpg filter=lfs diff=lfs merge=lfs -text
451
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11437.jpg filter=lfs diff=lfs merge=lfs -text
452
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11438.jpg filter=lfs diff=lfs merge=lfs -text
453
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11439.jpg filter=lfs diff=lfs merge=lfs -text
454
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11440.jpg filter=lfs diff=lfs merge=lfs -text
455
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11441.jpg filter=lfs diff=lfs merge=lfs -text
456
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11442.jpg filter=lfs diff=lfs merge=lfs -text
457
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11443.jpg filter=lfs diff=lfs merge=lfs -text
458
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11444.jpg filter=lfs diff=lfs merge=lfs -text
459
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11445.jpg filter=lfs diff=lfs merge=lfs -text
460
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11446.jpg filter=lfs diff=lfs merge=lfs -text
461
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11447.jpg filter=lfs diff=lfs merge=lfs -text
462
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11448.jpg filter=lfs diff=lfs merge=lfs -text
463
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11449.jpg filter=lfs diff=lfs merge=lfs -text
464
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11450.jpg filter=lfs diff=lfs merge=lfs -text
465
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11451.jpg filter=lfs diff=lfs merge=lfs -text
466
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11452.jpg filter=lfs diff=lfs merge=lfs -text
467
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11453.jpg filter=lfs diff=lfs merge=lfs -text
468
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11454.jpg filter=lfs diff=lfs merge=lfs -text
469
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11455.jpg filter=lfs diff=lfs merge=lfs -text
470
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11456.jpg filter=lfs diff=lfs merge=lfs -text
471
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11457.jpg filter=lfs diff=lfs merge=lfs -text
472
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11458.jpg filter=lfs diff=lfs merge=lfs -text
473
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11459.jpg filter=lfs diff=lfs merge=lfs -text
474
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11460.jpg filter=lfs diff=lfs merge=lfs -text
475
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11461.jpg filter=lfs diff=lfs merge=lfs -text
476
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11462.jpg filter=lfs diff=lfs merge=lfs -text
477
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11463.jpg filter=lfs diff=lfs merge=lfs -text
478
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11464.jpg filter=lfs diff=lfs merge=lfs -text
479
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11465.jpg filter=lfs diff=lfs merge=lfs -text
480
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11466.jpg filter=lfs diff=lfs merge=lfs -text
481
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11467.jpg filter=lfs diff=lfs merge=lfs -text
482
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11468.jpg filter=lfs diff=lfs merge=lfs -text
483
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11469.jpg filter=lfs diff=lfs merge=lfs -text
484
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11470.jpg filter=lfs diff=lfs merge=lfs -text
485
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11471.jpg filter=lfs diff=lfs merge=lfs -text
486
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11472.jpg filter=lfs diff=lfs merge=lfs -text
487
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11473.jpg filter=lfs diff=lfs merge=lfs -text
488
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11474.jpg filter=lfs diff=lfs merge=lfs -text
489
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11475.jpg filter=lfs diff=lfs merge=lfs -text
490
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11476.jpg filter=lfs diff=lfs merge=lfs -text
491
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11477.jpg filter=lfs diff=lfs merge=lfs -text
492
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11478.jpg filter=lfs diff=lfs merge=lfs -text
493
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11479.jpg filter=lfs diff=lfs merge=lfs -text
494
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11480.jpg filter=lfs diff=lfs merge=lfs -text
495
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11481.jpg filter=lfs diff=lfs merge=lfs -text
496
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11482.jpg filter=lfs diff=lfs merge=lfs -text
497
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11483.jpg filter=lfs diff=lfs merge=lfs -text
498
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11484.jpg filter=lfs diff=lfs merge=lfs -text
499
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11485.jpg filter=lfs diff=lfs merge=lfs -text
500
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11486.jpg filter=lfs diff=lfs merge=lfs -text
501
+ third_parts/zhouyik/zt_any_visual_prompt/fine_out_0118/sa_11487.jpg filter=lfs diff=lfs merge=lfs -text
502
+ third_parts/zhouyik/zt_any_visual_prompt/out/sa_10293442_out.jpg filter=lfs diff=lfs merge=lfs -text
503
+ third_parts/zhouyik/zt_any_visual_prompt/out/sa_2826217_out.jpg filter=lfs diff=lfs merge=lfs -text
504
+ third_parts/zhouyik/zt_any_visual_prompt/out/sa_3242171_out.jpg filter=lfs diff=lfs merge=lfs -text
505
+ third_parts/zhouyik/zt_any_visual_prompt/out/sa_3451147_out.jpg filter=lfs diff=lfs merge=lfs -text
506
+ third_parts/zhouyik/zt_any_visual_prompt/out/sa_3534642_out.jpg filter=lfs diff=lfs merge=lfs -text
507
+ third_parts/zhouyik/zt_any_visual_prompt/out/sa_3691529_out.jpg filter=lfs diff=lfs merge=lfs -text
508
+ third_parts/zhouyik/zt_any_visual_prompt/out/sa_5587588_out.jpg filter=lfs diff=lfs merge=lfs -text
509
+ third_parts/zhouyik/zt_any_visual_prompt/out/sa_6333772_out.jpg filter=lfs diff=lfs merge=lfs -text
510
+ third_parts/zhouyik/zt_any_visual_prompt/out/sa_6360934_out.jpg filter=lfs diff=lfs merge=lfs -text
511
+ third_parts/zhouyik/zt_any_visual_prompt/out/sa_7799885_out.jpg filter=lfs diff=lfs merge=lfs -text
512
+ third_parts/zhouyik/zt_any_visual_prompt/out/sa_7945480_out.jpg filter=lfs diff=lfs merge=lfs -text
513
+ third_parts/zhouyik/zt_any_visual_prompt/out/sa_7963505_out.jpg filter=lfs diff=lfs merge=lfs -text
514
+ third_parts/zhouyik/zt_any_visual_prompt/out/sa_8536722_out.jpg filter=lfs diff=lfs merge=lfs -text
515
+ third_parts/zhouyik/zt_any_visual_prompt/out/sa_9673939_out.jpg filter=lfs diff=lfs merge=lfs -text
516
+ third_parts/zhouyik/zt_any_visual_prompt/out/sa_9684593_out.jpg filter=lfs diff=lfs merge=lfs -text
517
+ third_parts/zhouyik/zt_any_visual_prompt/out/yt_0001_out.jpg filter=lfs diff=lfs merge=lfs -text
518
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11188.jpg filter=lfs diff=lfs merge=lfs -text
519
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11189.jpg filter=lfs diff=lfs merge=lfs -text
520
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11190.jpg filter=lfs diff=lfs merge=lfs -text
521
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11191.jpg filter=lfs diff=lfs merge=lfs -text
522
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11192.jpg filter=lfs diff=lfs merge=lfs -text
523
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11193.jpg filter=lfs diff=lfs merge=lfs -text
524
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11194.jpg filter=lfs diff=lfs merge=lfs -text
525
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11195.jpg filter=lfs diff=lfs merge=lfs -text
526
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11196.jpg filter=lfs diff=lfs merge=lfs -text
527
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11197.jpg filter=lfs diff=lfs merge=lfs -text
528
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11198.jpg filter=lfs diff=lfs merge=lfs -text
529
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11199.jpg filter=lfs diff=lfs merge=lfs -text
530
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11200.jpg filter=lfs diff=lfs merge=lfs -text
531
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11201.jpg filter=lfs diff=lfs merge=lfs -text
532
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11202.jpg filter=lfs diff=lfs merge=lfs -text
533
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11203.jpg filter=lfs diff=lfs merge=lfs -text
534
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11204.jpg filter=lfs diff=lfs merge=lfs -text
535
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11205.jpg filter=lfs diff=lfs merge=lfs -text
536
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11206.jpg filter=lfs diff=lfs merge=lfs -text
537
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11207.jpg filter=lfs diff=lfs merge=lfs -text
538
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11208.jpg filter=lfs diff=lfs merge=lfs -text
539
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11209.jpg filter=lfs diff=lfs merge=lfs -text
540
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11210.jpg filter=lfs diff=lfs merge=lfs -text
541
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11212.jpg filter=lfs diff=lfs merge=lfs -text
542
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11213.jpg filter=lfs diff=lfs merge=lfs -text
543
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11214.jpg filter=lfs diff=lfs merge=lfs -text
544
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11215.jpg filter=lfs diff=lfs merge=lfs -text
545
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11216.jpg filter=lfs diff=lfs merge=lfs -text
546
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11217.jpg filter=lfs diff=lfs merge=lfs -text
547
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11218.jpg filter=lfs diff=lfs merge=lfs -text
548
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11219.jpg filter=lfs diff=lfs merge=lfs -text
549
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11220.jpg filter=lfs diff=lfs merge=lfs -text
550
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11221.jpg filter=lfs diff=lfs merge=lfs -text
551
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11222.jpg filter=lfs diff=lfs merge=lfs -text
552
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11223.jpg filter=lfs diff=lfs merge=lfs -text
553
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11224.jpg filter=lfs diff=lfs merge=lfs -text
554
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11225.jpg filter=lfs diff=lfs merge=lfs -text
555
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11226.jpg filter=lfs diff=lfs merge=lfs -text
556
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11227.jpg filter=lfs diff=lfs merge=lfs -text
557
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11228.jpg filter=lfs diff=lfs merge=lfs -text
558
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11229.jpg filter=lfs diff=lfs merge=lfs -text
559
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11230.jpg filter=lfs diff=lfs merge=lfs -text
560
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11231.jpg filter=lfs diff=lfs merge=lfs -text
561
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11232.jpg filter=lfs diff=lfs merge=lfs -text
562
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11233.jpg filter=lfs diff=lfs merge=lfs -text
563
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11234.jpg filter=lfs diff=lfs merge=lfs -text
564
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11235.jpg filter=lfs diff=lfs merge=lfs -text
565
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11236.jpg filter=lfs diff=lfs merge=lfs -text
566
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11237.jpg filter=lfs diff=lfs merge=lfs -text
567
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11238.jpg filter=lfs diff=lfs merge=lfs -text
568
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11239.jpg filter=lfs diff=lfs merge=lfs -text
569
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11240.jpg filter=lfs diff=lfs merge=lfs -text
570
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11241.jpg filter=lfs diff=lfs merge=lfs -text
571
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11242.jpg filter=lfs diff=lfs merge=lfs -text
572
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11243.jpg filter=lfs diff=lfs merge=lfs -text
573
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11244.jpg filter=lfs diff=lfs merge=lfs -text
574
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11245.jpg filter=lfs diff=lfs merge=lfs -text
575
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11246.jpg filter=lfs diff=lfs merge=lfs -text
576
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11247.jpg filter=lfs diff=lfs merge=lfs -text
577
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11248.jpg filter=lfs diff=lfs merge=lfs -text
578
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11249.jpg filter=lfs diff=lfs merge=lfs -text
579
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11250.jpg filter=lfs diff=lfs merge=lfs -text
580
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11251.jpg filter=lfs diff=lfs merge=lfs -text
581
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_11252.jpg filter=lfs diff=lfs merge=lfs -text
582
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out/sa_1556660.jpg filter=lfs diff=lfs merge=lfs -text
583
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0115/sa_10293442.jpg filter=lfs diff=lfs merge=lfs -text
584
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0115/sa_1556660.jpg filter=lfs diff=lfs merge=lfs -text
585
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0115/sa_2826217.jpg filter=lfs diff=lfs merge=lfs -text
586
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0115/sa_3242171.jpg filter=lfs diff=lfs merge=lfs -text
587
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0115/sa_3451147.jpg filter=lfs diff=lfs merge=lfs -text
588
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0115/sa_3534642.jpg filter=lfs diff=lfs merge=lfs -text
589
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0115/sa_3691529.jpg filter=lfs diff=lfs merge=lfs -text
590
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0115/sa_5587588.jpg filter=lfs diff=lfs merge=lfs -text
591
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0115/sa_6333772.jpg filter=lfs diff=lfs merge=lfs -text
592
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0115/sa_6360934.jpg filter=lfs diff=lfs merge=lfs -text
593
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0115/sa_7799885.jpg filter=lfs diff=lfs merge=lfs -text
594
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0115/sa_7945480.jpg filter=lfs diff=lfs merge=lfs -text
595
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0115/sa_7963505.jpg filter=lfs diff=lfs merge=lfs -text
596
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0115/sa_8536722.jpg filter=lfs diff=lfs merge=lfs -text
597
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0115/sa_9673939.jpg filter=lfs diff=lfs merge=lfs -text
598
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0115/sa_9684593.jpg filter=lfs diff=lfs merge=lfs -text
599
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0115/yt_0001.jpg filter=lfs diff=lfs merge=lfs -text
600
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0115/yt_0002.jpg filter=lfs diff=lfs merge=lfs -text
601
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0115/yt_0003.jpg filter=lfs diff=lfs merge=lfs -text
602
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0116/sa_10293442.jpg filter=lfs diff=lfs merge=lfs -text
603
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0116/sa_1556660.jpg filter=lfs diff=lfs merge=lfs -text
604
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0116/sa_2826217.jpg filter=lfs diff=lfs merge=lfs -text
605
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0116/sa_3242171.jpg filter=lfs diff=lfs merge=lfs -text
606
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0116/sa_3451147.jpg filter=lfs diff=lfs merge=lfs -text
607
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0116/sa_3534642.jpg filter=lfs diff=lfs merge=lfs -text
608
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0116/sa_3691529.jpg filter=lfs diff=lfs merge=lfs -text
609
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0116/sa_5587588.jpg filter=lfs diff=lfs merge=lfs -text
610
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0116/sa_6333772.jpg filter=lfs diff=lfs merge=lfs -text
611
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0116/sa_6360934.jpg filter=lfs diff=lfs merge=lfs -text
612
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0116/sa_7799885.jpg filter=lfs diff=lfs merge=lfs -text
613
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0116/sa_7945480.jpg filter=lfs diff=lfs merge=lfs -text
614
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0116/sa_7963505.jpg filter=lfs diff=lfs merge=lfs -text
615
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0116/sa_8536722.jpg filter=lfs diff=lfs merge=lfs -text
616
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0116/sa_9673939.jpg filter=lfs diff=lfs merge=lfs -text
617
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0116/sa_9684593.jpg filter=lfs diff=lfs merge=lfs -text
618
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0116/yt_0001.jpg filter=lfs diff=lfs merge=lfs -text
619
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0116/yt_0002.jpg filter=lfs diff=lfs merge=lfs -text
620
+ third_parts/zhouyik/zt_any_visual_prompt/raw_ape_out_0116/yt_0003.jpg filter=lfs diff=lfs merge=lfs -text
621
+ third_parts/zhouyik/zt_any_visual_prompt/sa_10293442.jpg filter=lfs diff=lfs merge=lfs -text
622
+ third_parts/zhouyik/zt_any_visual_prompt/sa_1556660.jpg filter=lfs diff=lfs merge=lfs -text
623
+ third_parts/zhouyik/zt_any_visual_prompt/sa_2826217.jpg filter=lfs diff=lfs merge=lfs -text
624
+ third_parts/zhouyik/zt_any_visual_prompt/sa_3242171.jpg filter=lfs diff=lfs merge=lfs -text
625
+ third_parts/zhouyik/zt_any_visual_prompt/sa_3451147.jpg filter=lfs diff=lfs merge=lfs -text
626
+ third_parts/zhouyik/zt_any_visual_prompt/sa_3534642.jpg filter=lfs diff=lfs merge=lfs -text
627
+ third_parts/zhouyik/zt_any_visual_prompt/sa_3691529.jpg filter=lfs diff=lfs merge=lfs -text
628
+ third_parts/zhouyik/zt_any_visual_prompt/sa_5587588.jpg filter=lfs diff=lfs merge=lfs -text
629
+ third_parts/zhouyik/zt_any_visual_prompt/sa_6333772.jpg filter=lfs diff=lfs merge=lfs -text
630
+ third_parts/zhouyik/zt_any_visual_prompt/sa_6360934.jpg filter=lfs diff=lfs merge=lfs -text
631
+ third_parts/zhouyik/zt_any_visual_prompt/sa_7799885.jpg filter=lfs diff=lfs merge=lfs -text
632
+ third_parts/zhouyik/zt_any_visual_prompt/sa_7945480.jpg filter=lfs diff=lfs merge=lfs -text
633
+ third_parts/zhouyik/zt_any_visual_prompt/sa_7963505.jpg filter=lfs diff=lfs merge=lfs -text
634
+ third_parts/zhouyik/zt_any_visual_prompt/sa_8536722.jpg filter=lfs diff=lfs merge=lfs -text
635
+ third_parts/zhouyik/zt_any_visual_prompt/sa_9673939.jpg filter=lfs diff=lfs merge=lfs -text
636
+ third_parts/zhouyik/zt_any_visual_prompt/sa_9684593.jpg filter=lfs diff=lfs merge=lfs -text
637
+ third_parts/zhouyik/zt_any_visual_prompt/sam_merge_out/sa_11224.jpg filter=lfs diff=lfs merge=lfs -text
638
+ third_parts/zhouyik/zt_any_visual_prompt/sam_merge_out/sa_11252.jpg filter=lfs diff=lfs merge=lfs -text
639
+ third_parts/zhouyik/zt_any_visual_prompt/yt_0001.jpg filter=lfs diff=lfs merge=lfs -text
640
+ third_parts/zhouyik/zt_any_visual_prompt/yt_0002.jpg filter=lfs diff=lfs merge=lfs -text
641
+ third_parts/zhouyik/zt_any_visual_prompt/yt_0003.jpg filter=lfs diff=lfs merge=lfs -text
642
+ third_parts/zhouyik/zt_any_visual_prompt_copy/final_out_0115/sa_10293442.jpg filter=lfs diff=lfs merge=lfs -text
643
+ third_parts/zhouyik/zt_any_visual_prompt_copy/final_out_0115/sa_1556660.jpg filter=lfs diff=lfs merge=lfs -text
644
+ third_parts/zhouyik/zt_any_visual_prompt_copy/final_out_0115/sa_2826217.jpg filter=lfs diff=lfs merge=lfs -text
645
+ third_parts/zhouyik/zt_any_visual_prompt_copy/final_out_0115/sa_3242171.jpg filter=lfs diff=lfs merge=lfs -text
646
+ third_parts/zhouyik/zt_any_visual_prompt_copy/final_out_0115/sa_3451147.jpg filter=lfs diff=lfs merge=lfs -text
647
+ third_parts/zhouyik/zt_any_visual_prompt_copy/final_out_0115/sa_3534642.jpg filter=lfs diff=lfs merge=lfs -text
648
+ third_parts/zhouyik/zt_any_visual_prompt_copy/final_out_0115/sa_3691529.jpg filter=lfs diff=lfs merge=lfs -text
649
+ third_parts/zhouyik/zt_any_visual_prompt_copy/final_out_0115/sa_5587588.jpg filter=lfs diff=lfs merge=lfs -text
650
+ third_parts/zhouyik/zt_any_visual_prompt_copy/final_out_0115/sa_6333772.jpg filter=lfs diff=lfs merge=lfs -text
651
+ third_parts/zhouyik/zt_any_visual_prompt_copy/final_out_0115/sa_6360934.jpg filter=lfs diff=lfs merge=lfs -text
652
+ third_parts/zhouyik/zt_any_visual_prompt_copy/final_out_0115/sa_7799885.jpg filter=lfs diff=lfs merge=lfs -text
653
+ third_parts/zhouyik/zt_any_visual_prompt_copy/final_out_0115/sa_7945480.jpg filter=lfs diff=lfs merge=lfs -text
654
+ third_parts/zhouyik/zt_any_visual_prompt_copy/final_out_0115/sa_7963505.jpg filter=lfs diff=lfs merge=lfs -text
655
+ third_parts/zhouyik/zt_any_visual_prompt_copy/final_out_0115/sa_8536722.jpg filter=lfs diff=lfs merge=lfs -text
656
+ third_parts/zhouyik/zt_any_visual_prompt_copy/final_out_0115/sa_9673939.jpg filter=lfs diff=lfs merge=lfs -text
657
+ third_parts/zhouyik/zt_any_visual_prompt_copy/final_out_0115/sa_9684593.jpg filter=lfs diff=lfs merge=lfs -text
658
+ third_parts/zhouyik/zt_any_visual_prompt_copy/final_out_0115/yt_0001.jpg filter=lfs diff=lfs merge=lfs -text
659
+ third_parts/zhouyik/zt_any_visual_prompt_copy/final_out_0115/yt_0002.jpg filter=lfs diff=lfs merge=lfs -text
660
+ third_parts/zhouyik/zt_any_visual_prompt_copy/final_out_0115/yt_0003.jpg filter=lfs diff=lfs merge=lfs -text
661
+ third_parts/zhouyik/zt_any_visual_prompt_copy/image/sa_10293442.jpg filter=lfs diff=lfs merge=lfs -text
662
+ third_parts/zhouyik/zt_any_visual_prompt_copy/image/sa_1556660.jpg filter=lfs diff=lfs merge=lfs -text
663
+ third_parts/zhouyik/zt_any_visual_prompt_copy/image/sa_2826217.jpg filter=lfs diff=lfs merge=lfs -text
664
+ third_parts/zhouyik/zt_any_visual_prompt_copy/image/sa_3242171.jpg filter=lfs diff=lfs merge=lfs -text
665
+ third_parts/zhouyik/zt_any_visual_prompt_copy/image/sa_3451147.jpg filter=lfs diff=lfs merge=lfs -text
666
+ third_parts/zhouyik/zt_any_visual_prompt_copy/image/sa_3534642.jpg filter=lfs diff=lfs merge=lfs -text
667
+ third_parts/zhouyik/zt_any_visual_prompt_copy/image/sa_3691529.jpg filter=lfs diff=lfs merge=lfs -text
668
+ third_parts/zhouyik/zt_any_visual_prompt_copy/image/sa_5587588.jpg filter=lfs diff=lfs merge=lfs -text
669
+ third_parts/zhouyik/zt_any_visual_prompt_copy/image/sa_6333772.jpg filter=lfs diff=lfs merge=lfs -text
670
+ third_parts/zhouyik/zt_any_visual_prompt_copy/image/sa_6360934.jpg filter=lfs diff=lfs merge=lfs -text
671
+ third_parts/zhouyik/zt_any_visual_prompt_copy/image/sa_7799885.jpg filter=lfs diff=lfs merge=lfs -text
672
+ third_parts/zhouyik/zt_any_visual_prompt_copy/image/sa_7945480.jpg filter=lfs diff=lfs merge=lfs -text
673
+ third_parts/zhouyik/zt_any_visual_prompt_copy/image/sa_7963505.jpg filter=lfs diff=lfs merge=lfs -text
674
+ third_parts/zhouyik/zt_any_visual_prompt_copy/image/sa_8536722.jpg filter=lfs diff=lfs merge=lfs -text
675
+ third_parts/zhouyik/zt_any_visual_prompt_copy/image/sa_9673939.jpg filter=lfs diff=lfs merge=lfs -text
676
+ third_parts/zhouyik/zt_any_visual_prompt_copy/image/sa_9684593.jpg filter=lfs diff=lfs merge=lfs -text
677
+ third_parts/zhouyik/zt_any_visual_prompt_copy/image/yt_0001.jpg filter=lfs diff=lfs merge=lfs -text
678
+ third_parts/zhouyik/zt_any_visual_prompt_copy/image/yt_0002.jpg filter=lfs diff=lfs merge=lfs -text
679
+ third_parts/zhouyik/zt_any_visual_prompt_copy/image/yt_0003.jpg filter=lfs diff=lfs merge=lfs -text
680
+ third_parts/zhouyik/zt_any_visual_prompt_copy/raw_ape_out_0115/sa_10293442.jpg filter=lfs diff=lfs merge=lfs -text
681
+ third_parts/zhouyik/zt_any_visual_prompt_copy/raw_ape_out_0115/sa_1556660.jpg filter=lfs diff=lfs merge=lfs -text
682
+ third_parts/zhouyik/zt_any_visual_prompt_copy/raw_ape_out_0115/sa_2826217.jpg filter=lfs diff=lfs merge=lfs -text
683
+ third_parts/zhouyik/zt_any_visual_prompt_copy/raw_ape_out_0115/sa_3242171.jpg filter=lfs diff=lfs merge=lfs -text
684
+ third_parts/zhouyik/zt_any_visual_prompt_copy/raw_ape_out_0115/sa_3451147.jpg filter=lfs diff=lfs merge=lfs -text
685
+ third_parts/zhouyik/zt_any_visual_prompt_copy/raw_ape_out_0115/sa_3534642.jpg filter=lfs diff=lfs merge=lfs -text
686
+ third_parts/zhouyik/zt_any_visual_prompt_copy/raw_ape_out_0115/sa_3691529.jpg filter=lfs diff=lfs merge=lfs -text
687
+ third_parts/zhouyik/zt_any_visual_prompt_copy/raw_ape_out_0115/sa_5587588.jpg filter=lfs diff=lfs merge=lfs -text
688
+ third_parts/zhouyik/zt_any_visual_prompt_copy/raw_ape_out_0115/sa_6333772.jpg filter=lfs diff=lfs merge=lfs -text
689
+ third_parts/zhouyik/zt_any_visual_prompt_copy/raw_ape_out_0115/sa_6360934.jpg filter=lfs diff=lfs merge=lfs -text
690
+ third_parts/zhouyik/zt_any_visual_prompt_copy/raw_ape_out_0115/sa_7799885.jpg filter=lfs diff=lfs merge=lfs -text
691
+ third_parts/zhouyik/zt_any_visual_prompt_copy/raw_ape_out_0115/sa_7945480.jpg filter=lfs diff=lfs merge=lfs -text
692
+ third_parts/zhouyik/zt_any_visual_prompt_copy/raw_ape_out_0115/sa_7963505.jpg filter=lfs diff=lfs merge=lfs -text
693
+ third_parts/zhouyik/zt_any_visual_prompt_copy/raw_ape_out_0115/sa_8536722.jpg filter=lfs diff=lfs merge=lfs -text
694
+ third_parts/zhouyik/zt_any_visual_prompt_copy/raw_ape_out_0115/sa_9673939.jpg filter=lfs diff=lfs merge=lfs -text
695
+ third_parts/zhouyik/zt_any_visual_prompt_copy/raw_ape_out_0115/sa_9684593.jpg filter=lfs diff=lfs merge=lfs -text
696
+ third_parts/zhouyik/zt_any_visual_prompt_copy/raw_ape_out_0115/yt_0001.jpg filter=lfs diff=lfs merge=lfs -text
697
+ third_parts/zhouyik/zt_any_visual_prompt_copy/raw_ape_out_0115/yt_0002.jpg filter=lfs diff=lfs merge=lfs -text
698
+ third_parts/zhouyik/zt_any_visual_prompt_copy/raw_ape_out_0115/yt_0003.jpg filter=lfs diff=lfs merge=lfs -text
699
+ zhouyik/cvpr2025_rebuttal/mllm_match_eval_full_K10_V1.tsv filter=lfs diff=lfs merge=lfs -text
700
+ zhouyik/cvpr2025_rebuttal/mllm_match_eval_full_K10_V2.tsv filter=lfs diff=lfs merge=lfs -text
701
+ zhouyik/cvpr2025_rebuttal/mllm_match_eval_full_K4_V1.tsv filter=lfs diff=lfs merge=lfs -text
702
+ zhouyik/cvpr2025_rebuttal/mllm_match_eval_full_K4_V2.tsv filter=lfs diff=lfs merge=lfs -text
703
+ zhouyik/cvpr2025_rebuttal/mllm_match_eval_full_K4_V3.tsv filter=lfs diff=lfs merge=lfs -text
704
+ zhouyik/cvpr2025_rebuttal/mllm_match_eval_full_K4_V4.tsv filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ *.egg-info/
24
+ .installed.cfg
25
+ *.egg
26
+ MANIFEST
27
+
28
+ # PyInstaller
29
+ # Usually these files are written by a python script from a template
30
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
31
+ *.manifest
32
+ *.spec
33
+
34
+ # Installer logs
35
+ pip-log.txt
36
+ pip-delete-this-directory.txt
37
+
38
+ # Unit test / coverage reports
39
+ htmlcov/
40
+ .tox/
41
+ .coverage
42
+ .coverage.*
43
+ .cache
44
+ nosetests.xml
45
+ coverage.xml
46
+ *.cover
47
+ .hypothesis/
48
+ .pytest_cache/
49
+
50
+ # Translations
51
+ *.mo
52
+ *.pot
53
+
54
+ # Django stuff:
55
+ *.log
56
+ local_settings.py
57
+ db.sqlite3
58
+
59
+ # Flask stuff:
60
+ instance/
61
+ .webassets-cache
62
+
63
+ # Scrapy stuff:
64
+ .scrapy
65
+
66
+ # Sphinx documentation
67
+ docs/*/_build/
68
+
69
+ # PyBuilder
70
+ target/
71
+
72
+ # Jupyter Notebook
73
+ .ipynb_checkpoints
74
+
75
+ # pyenv
76
+ .python-version
77
+
78
+ # celery beat schedule file
79
+ celerybeat-schedule
80
+
81
+ # SageMath parsed files
82
+ *.sage.py
83
+
84
+ # Environments
85
+ .env
86
+ .venv
87
+ env/
88
+ venv/
89
+ ENV/
90
+ env.bak/
91
+ venv.bak/
92
+
93
+ # Spyder project settings
94
+ .spyderproject
95
+ .spyproject
96
+
97
+ # Rope project settings
98
+ .ropeproject
99
+
100
+ # mkdocs documentation
101
+ /site
102
+
103
+ # mypy
104
+ .mypy_cache/
105
+
106
+ # custom
107
+ checkpoints/
108
+ checkpoints
109
+ data/
110
+ data
111
+ .vscode
112
+ .idea
113
+ .DS_Store
114
+ *.pkl
115
+ *.pkl.json
116
+ *.log.json
117
+ work_dirs/
118
+
119
+ # Pytorch
120
+ *.pth
121
+ *.py~
122
+ *.sh~
123
+
124
+ # srun
125
+ *.out
126
+ batchscript-*
OpenGVLab/InternVL2-2B/.gitattributes ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ examples/red-panda.mp4 filter=lfs diff=lfs merge=lfs -text
37
+ eval_milebench/TextNeedleInAHaystack/TextNeedleInAHaystack_240803235133.json filter=lfs diff=lfs merge=lfs -text
38
+ eval_milebench/TextNeedleInAHaystack/pred.json filter=lfs diff=lfs merge=lfs -text
OpenGVLab/InternVL2-2B/README.md ADDED
@@ -0,0 +1,632 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pipeline_tag: image-text-to-text
4
+ library_name: transformers
5
+ base_model:
6
+ - OpenGVLab/InternViT-300M-448px
7
+ - internlm/internlm2-chat-1_8b
8
+ new_version: OpenGVLab/InternVL2_5-2B
9
+ base_model_relation: merge
10
+ language:
11
+ - multilingual
12
+ tags:
13
+ - internvl
14
+ - custom_code
15
+ ---
16
+
17
+ # InternVL2-2B
18
+
19
+ [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[📜 InternVL 1.0\]](https://huggingface.co/papers/2312.14238) [\[📜 InternVL 1.5\]](https://huggingface.co/papers/2404.16821) [\[📜 Mini-InternVL\]](https://arxiv.org/abs/2410.16261) [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271)
20
+
21
+ [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#quick-start) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)
22
+
23
+ <div align="center">
24
+ <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
25
+ </div>
26
+
27
+ ## Introduction
28
+
29
+ We are excited to announce the release of InternVL 2.0, the latest addition to the InternVL series of multimodal large language models. InternVL 2.0 features a variety of **instruction-tuned models**, ranging from 1 billion to 108 billion parameters. This repository contains the instruction-tuned InternVL2-2B model.
30
+
31
+ Compared to the state-of-the-art open-source multimodal large language models, InternVL 2.0 surpasses most open-source models. It demonstrates competitive performance on par with proprietary commercial models across various capabilities, including document and chart comprehension, infographics QA, scene text understanding and OCR tasks, scientific and mathematical problem solving, as well as cultural understanding and integrated multimodal capabilities.
32
+
33
+ InternVL 2.0 is trained with an 8k context window and utilizes training data consisting of long texts, multiple images, and videos, significantly improving its ability to handle these types of inputs compared to InternVL 1.5. For more details, please refer to our [blog](https://internvl.github.io/blog/2024-07-02-InternVL-2.0/) and [GitHub](https://github.com/OpenGVLab/InternVL).
34
+
35
+ | Model Name | Vision Part | Language Part | HF Link | MS Link |
36
+ | :------------------: | :---------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------: | :--------------------------------------------------------------: | :--------------------------------------------------------------------: |
37
+ | InternVL2-1B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-1B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-1B) |
38
+ | InternVL2-2B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [internlm2-chat-1_8b](https://huggingface.co/internlm/internlm2-chat-1_8b) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-2B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-2B) |
39
+ | InternVL2-4B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-4B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-4B) |
40
+ | InternVL2-8B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-8B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-8B) |
41
+ | InternVL2-26B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [internlm2-chat-20b](https://huggingface.co/internlm/internlm2-chat-20b) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-26B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-26B) |
42
+ | InternVL2-40B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-40B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-40B) |
43
+ | InternVL2-Llama3-76B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [Hermes-2-Theta-Llama-3-70B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-70B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-Llama3-76B) |
44
+
45
+ ## Model Details
46
+
47
+ InternVL 2.0 is a multimodal large language model series, featuring models of various sizes. For each size, we release instruction-tuned models optimized for multimodal tasks. InternVL2-2B consists of [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px), an MLP projector, and [internlm2-chat-1_8b](https://huggingface.co/internlm/internlm2-chat-1_8b).
48
+
49
+ ## Performance
50
+
51
+ ### Image Benchmarks
52
+
53
+ | Benchmark | PaliGemma-3B | Mini-InternVL-2B-1-5 | InternVL2-2B |
54
+ | :--------------------------: | :----------: | :------------------: | :----------: |
55
+ | Model Size | 2.9B | 2.2B | 2.2B |
56
+ | | | | |
57
+ | DocVQA<sub>test</sub> | - | 85.0 | 86.9 |
58
+ | ChartQA<sub>test</sub> | - | 74.8 | 76.2 |
59
+ | InfoVQA<sub>test</sub> | - | 55.4 | 58.9 |
60
+ | TextVQA<sub>val</sub> | 68.1 | 70.5 | 73.4 |
61
+ | OCRBench | 614 | 654 | 784 |
62
+ | MME<sub>sum</sub> | 1686.1 | 1901.5 | 1876.8 |
63
+ | RealWorldQA | 55.2 | 57.9 | 57.3 |
64
+ | AI2D<sub>test</sub> | 68.3 | 69.8 | 74.1 |
65
+ | MMMU<sub>val</sub> | 34.9 | 37.4 | 36.3 |
66
+ | MMBench-EN<sub>test</sub> | 71.0 | 70.9 | 73.2 |
67
+ | MMBench-CN<sub>test</sub> | 63.6 | 66.2 | 70.9 |
68
+ | CCBench<sub>dev</sub> | 29.6 | 63.5 | 74.7 |
69
+ | MMVet<sub>GPT-4-0613</sub> | - | 39.3 | 44.6 |
70
+ | MMVet<sub>GPT-4-Turbo</sub> | 33.1 | 35.5 | 39.5 |
71
+ | SEED-Image | 69.6 | 69.8 | 71.6 |
72
+ | HallBench<sub>avg</sub> | 32.2 | 37.5 | 37.9 |
73
+ | MathVista<sub>testmini</sub> | 28.7 | 41.1 | 46.3 |
74
+ | OpenCompass<sub>avg</sub> | 46.6 | 49.8 | 54.0 |
75
+
76
+ - For more details and evaluation reproduction, please refer to our [Evaluation Guide](https://internvl.readthedocs.io/en/latest/internvl2.0/evaluation.html).
77
+
78
+ - We simultaneously use [InternVL](https://github.com/OpenGVLab/InternVL) and [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) repositories for model evaluation. Specifically, the results reported for DocVQA, ChartQA, InfoVQA, TextVQA, MME, AI2D, MMBench, CCBench, MMVet (GPT-4-0613), and SEED-Image were tested using the InternVL repository. MMMU, OCRBench, RealWorldQA, HallBench, MMVet (GPT-4-Turbo), and MathVista were evaluated using the VLMEvalKit.
79
+
80
+ ### Video Benchmarks
81
+
82
+ | Benchmark | VideoChat2-Phi3 | VideoChat2-HD-Mistral | Mini-InternVL-2B-1-5 | InternVL2-2B |
83
+ | :-------------------------: | :-------------: | :-------------------: | :------------------: | :----------: |
84
+ | Model Size | 4B | 7B | 2.2B | 2.2B |
85
+ | | | | | |
86
+ | MVBench | 55.1 | 60.4 | 37.0 | 60.2 |
87
+ | MMBench-Video<sub>8f</sub> | - | - | 0.99 | 0.97 |
88
+ | MMBench-Video<sub>16f</sub> | - | - | 1.04 | 1.03 |
89
+ | Video-MME<br>w/o subs | - | 42.3 | 42.9 | 45.0 |
90
+ | Video-MME<br>w subs | - | 54.6 | 44.7 | 47.3 |
91
+
92
+ - We evaluate our models on MVBench and Video-MME by extracting 16 frames from each video, and each frame was resized to a 448x448 image.
93
+
94
+ ### Grounding Benchmarks
95
+
96
+ | Model | avg. | RefCOCO<br>(val) | RefCOCO<br>(testA) | RefCOCO<br>(testB) | RefCOCO+<br>(val) | RefCOCO+<br>(testA) | RefCOCO+<br>(testB) | RefCOCO‑g<br>(val) | RefCOCO‑g<br>(test) |
97
+ | :----------------------------: | :--: | :--------------: | :----------------: | :----------------: | :---------------: | :-----------------: | :-----------------: | :----------------: | :-----------------: |
98
+ | UNINEXT-H<br>(Specialist SOTA) | 88.9 | 92.6 | 94.3 | 91.5 | 85.2 | 89.6 | 79.8 | 88.7 | 89.4 |
99
+ | | | | | | | | | | |
100
+ | Mini-InternVL-<br>Chat-2B-V1-5 | 75.8 | 80.7 | 86.7 | 72.9 | 72.5 | 82.3 | 60.8 | 75.6 | 74.9 |
101
+ | Mini-InternVL-<br>Chat-4B-V1-5 | 84.4 | 88.0 | 91.4 | 83.5 | 81.5 | 87.4 | 73.8 | 84.7 | 84.6 |
102
+ | InternVL‑Chat‑V1‑5 | 88.8 | 91.4 | 93.7 | 87.1 | 87.0 | 92.3 | 80.9 | 88.5 | 89.3 |
103
+ | | | | | | | | | | |
104
+ | InternVL2‑1B | 79.9 | 83.6 | 88.7 | 79.8 | 76.0 | 83.6 | 67.7 | 80.2 | 79.9 |
105
+ | InternVL2‑2B | 77.7 | 82.3 | 88.2 | 75.9 | 73.5 | 82.8 | 63.3 | 77.6 | 78.3 |
106
+ | InternVL2‑4B | 84.4 | 88.5 | 91.2 | 83.9 | 81.2 | 87.2 | 73.8 | 84.6 | 84.6 |
107
+ | InternVL2‑8B | 82.9 | 87.1 | 91.1 | 80.7 | 79.8 | 87.9 | 71.4 | 82.7 | 82.7 |
108
+ | InternVL2‑26B | 88.5 | 91.2 | 93.3 | 87.4 | 86.8 | 91.0 | 81.2 | 88.5 | 88.6 |
109
+ | InternVL2‑40B | 90.3 | 93.0 | 94.7 | 89.2 | 88.5 | 92.8 | 83.6 | 90.3 | 90.6 |
110
+ | InternVL2-<br>Llama3‑76B | 90.0 | 92.2 | 94.8 | 88.4 | 88.8 | 93.1 | 82.8 | 89.5 | 90.3 |
111
+
112
+ - We use the following prompt to evaluate InternVL's grounding ability: `Please provide the bounding box coordinates of the region this sentence describes: <ref>{}</ref>`
113
+
114
+ Limitations: Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
115
+
116
+ ## Quick Start
117
+
118
+ We provide an example code to run `InternVL2-2B` using `transformers`.
119
+
120
+ > Please use transformers>=4.37.2 to ensure the model works normally.
121
+
122
+ ### Model Loading
123
+
124
+ #### 16-bit (bf16 / fp16)
125
+
126
+ ```python
127
+ import torch
128
+ from transformers import AutoTokenizer, AutoModel
129
+ path = "OpenGVLab/InternVL2-2B"
130
+ model = AutoModel.from_pretrained(
131
+ path,
132
+ torch_dtype=torch.bfloat16,
133
+ low_cpu_mem_usage=True,
134
+ use_flash_attn=True,
135
+ trust_remote_code=True).eval().cuda()
136
+ ```
137
+
138
+ #### BNB 8-bit Quantization
139
+
140
+ ```python
141
+ import torch
142
+ from transformers import AutoTokenizer, AutoModel
143
+ path = "OpenGVLab/InternVL2-2B"
144
+ model = AutoModel.from_pretrained(
145
+ path,
146
+ torch_dtype=torch.bfloat16,
147
+ load_in_8bit=True,
148
+ low_cpu_mem_usage=True,
149
+ use_flash_attn=True,
150
+ trust_remote_code=True).eval()
151
+ ```
152
+
153
+ #### BNB 4-bit Quantization
154
+
155
+ ```python
156
+ import torch
157
+ from transformers import AutoTokenizer, AutoModel
158
+ path = "OpenGVLab/InternVL2-2B"
159
+ model = AutoModel.from_pretrained(
160
+ path,
161
+ torch_dtype=torch.bfloat16,
162
+ load_in_4bit=True,
163
+ low_cpu_mem_usage=True,
164
+ use_flash_attn=True,
165
+ trust_remote_code=True).eval()
166
+ ```
167
+
168
+ #### Multiple GPUs
169
+
170
+ The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
171
+
172
+ ```python
173
+ import math
174
+ import torch
175
+ from transformers import AutoTokenizer, AutoModel
176
+
177
+ def split_model(model_name):
178
+ device_map = {}
179
+ world_size = torch.cuda.device_count()
180
+ num_layers = {
181
+ 'InternVL2-1B': 24, 'InternVL2-2B': 24, 'InternVL2-4B': 32, 'InternVL2-8B': 32,
182
+ 'InternVL2-26B': 48, 'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name]
183
+ # Since the first GPU will be used for ViT, treat it as half a GPU.
184
+ num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
185
+ num_layers_per_gpu = [num_layers_per_gpu] * world_size
186
+ num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
187
+ layer_cnt = 0
188
+ for i, num_layer in enumerate(num_layers_per_gpu):
189
+ for j in range(num_layer):
190
+ device_map[f'language_model.model.layers.{layer_cnt}'] = i
191
+ layer_cnt += 1
192
+ device_map['vision_model'] = 0
193
+ device_map['mlp1'] = 0
194
+ device_map['language_model.model.tok_embeddings'] = 0
195
+ device_map['language_model.model.embed_tokens'] = 0
196
+ device_map['language_model.output'] = 0
197
+ device_map['language_model.model.norm'] = 0
198
+ device_map['language_model.lm_head'] = 0
199
+ device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
200
+
201
+ return device_map
202
+
203
+ path = "OpenGVLab/InternVL2-2B"
204
+ device_map = split_model('InternVL2-2B')
205
+ model = AutoModel.from_pretrained(
206
+ path,
207
+ torch_dtype=torch.bfloat16,
208
+ low_cpu_mem_usage=True,
209
+ use_flash_attn=True,
210
+ trust_remote_code=True,
211
+ device_map=device_map).eval()
212
+ ```
213
+
214
+ ### Inference with Transformers
215
+
216
+ ```python
217
+ import numpy as np
218
+ import torch
219
+ import torchvision.transforms as T
220
+ from decord import VideoReader, cpu
221
+ from PIL import Image
222
+ from torchvision.transforms.functional import InterpolationMode
223
+ from transformers import AutoModel, AutoTokenizer
224
+
225
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
226
+ IMAGENET_STD = (0.229, 0.224, 0.225)
227
+
228
+ def build_transform(input_size):
229
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
230
+ transform = T.Compose([
231
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
232
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
233
+ T.ToTensor(),
234
+ T.Normalize(mean=MEAN, std=STD)
235
+ ])
236
+ return transform
237
+
238
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
239
+ best_ratio_diff = float('inf')
240
+ best_ratio = (1, 1)
241
+ area = width * height
242
+ for ratio in target_ratios:
243
+ target_aspect_ratio = ratio[0] / ratio[1]
244
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
245
+ if ratio_diff < best_ratio_diff:
246
+ best_ratio_diff = ratio_diff
247
+ best_ratio = ratio
248
+ elif ratio_diff == best_ratio_diff:
249
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
250
+ best_ratio = ratio
251
+ return best_ratio
252
+
253
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
254
+ orig_width, orig_height = image.size
255
+ aspect_ratio = orig_width / orig_height
256
+
257
+ # calculate the existing image aspect ratio
258
+ target_ratios = set(
259
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
260
+ i * j <= max_num and i * j >= min_num)
261
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
262
+
263
+ # find the closest aspect ratio to the target
264
+ target_aspect_ratio = find_closest_aspect_ratio(
265
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
266
+
267
+ # calculate the target width and height
268
+ target_width = image_size * target_aspect_ratio[0]
269
+ target_height = image_size * target_aspect_ratio[1]
270
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
271
+
272
+ # resize the image
273
+ resized_img = image.resize((target_width, target_height))
274
+ processed_images = []
275
+ for i in range(blocks):
276
+ box = (
277
+ (i % (target_width // image_size)) * image_size,
278
+ (i // (target_width // image_size)) * image_size,
279
+ ((i % (target_width // image_size)) + 1) * image_size,
280
+ ((i // (target_width // image_size)) + 1) * image_size
281
+ )
282
+ # split the image
283
+ split_img = resized_img.crop(box)
284
+ processed_images.append(split_img)
285
+ assert len(processed_images) == blocks
286
+ if use_thumbnail and len(processed_images) != 1:
287
+ thumbnail_img = image.resize((image_size, image_size))
288
+ processed_images.append(thumbnail_img)
289
+ return processed_images
290
+
291
+ def load_image(image_file, input_size=448, max_num=12):
292
+ image = Image.open(image_file).convert('RGB')
293
+ transform = build_transform(input_size=input_size)
294
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
295
+ pixel_values = [transform(image) for image in images]
296
+ pixel_values = torch.stack(pixel_values)
297
+ return pixel_values
298
+
299
+ # If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
300
+ path = 'OpenGVLab/InternVL2-2B'
301
+ model = AutoModel.from_pretrained(
302
+ path,
303
+ torch_dtype=torch.bfloat16,
304
+ low_cpu_mem_usage=True,
305
+ use_flash_attn=True,
306
+ trust_remote_code=True).eval().cuda()
307
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
308
+
309
+ # set the max number of tiles in `max_num`
310
+ pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
311
+ generation_config = dict(max_new_tokens=1024, do_sample=True)
312
+
313
+ # pure-text conversation (纯文本对话)
314
+ question = 'Hello, who are you?'
315
+ response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
316
+ print(f'User: {question}\nAssistant: {response}')
317
+
318
+ question = 'Can you tell me a story?'
319
+ response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
320
+ print(f'User: {question}\nAssistant: {response}')
321
+
322
+ # single-image single-round conversation (单图单轮对话)
323
+ question = '<image>\nPlease describe the image shortly.'
324
+ response = model.chat(tokenizer, pixel_values, question, generation_config)
325
+ print(f'User: {question}\nAssistant: {response}')
326
+
327
+ # single-image multi-round conversation (单图多轮对话)
328
+ question = '<image>\nPlease describe the image in detail.'
329
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
330
+ print(f'User: {question}\nAssistant: {response}')
331
+
332
+ question = 'Please write a poem according to the image.'
333
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
334
+ print(f'User: {question}\nAssistant: {response}')
335
+
336
+ # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
337
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
338
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
339
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
340
+
341
+ question = '<image>\nDescribe the two images in detail.'
342
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
343
+ history=None, return_history=True)
344
+ print(f'User: {question}\nAssistant: {response}')
345
+
346
+ question = 'What are the similarities and differences between these two images.'
347
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
348
+ history=history, return_history=True)
349
+ print(f'User: {question}\nAssistant: {response}')
350
+
351
+ # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
352
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
353
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
354
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
355
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
356
+
357
+ question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
358
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
359
+ num_patches_list=num_patches_list,
360
+ history=None, return_history=True)
361
+ print(f'User: {question}\nAssistant: {response}')
362
+
363
+ question = 'What are the similarities and differences between these two images.'
364
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
365
+ num_patches_list=num_patches_list,
366
+ history=history, return_history=True)
367
+ print(f'User: {question}\nAssistant: {response}')
368
+
369
+ # batch inference, single image per sample (单图批处理)
370
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
371
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
372
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
373
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
374
+
375
+ questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
376
+ responses = model.batch_chat(tokenizer, pixel_values,
377
+ num_patches_list=num_patches_list,
378
+ questions=questions,
379
+ generation_config=generation_config)
380
+ for question, response in zip(questions, responses):
381
+ print(f'User: {question}\nAssistant: {response}')
382
+
383
+ # video multi-round conversation (视频多轮对话)
384
+ def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
385
+ if bound:
386
+ start, end = bound[0], bound[1]
387
+ else:
388
+ start, end = -100000, 100000
389
+ start_idx = max(first_idx, round(start * fps))
390
+ end_idx = min(round(end * fps), max_frame)
391
+ seg_size = float(end_idx - start_idx) / num_segments
392
+ frame_indices = np.array([
393
+ int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
394
+ for idx in range(num_segments)
395
+ ])
396
+ return frame_indices
397
+
398
+ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
399
+ vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
400
+ max_frame = len(vr) - 1
401
+ fps = float(vr.get_avg_fps())
402
+
403
+ pixel_values_list, num_patches_list = [], []
404
+ transform = build_transform(input_size=input_size)
405
+ frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
406
+ for frame_index in frame_indices:
407
+ img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
408
+ img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
409
+ pixel_values = [transform(tile) for tile in img]
410
+ pixel_values = torch.stack(pixel_values)
411
+ num_patches_list.append(pixel_values.shape[0])
412
+ pixel_values_list.append(pixel_values)
413
+ pixel_values = torch.cat(pixel_values_list)
414
+ return pixel_values, num_patches_list
415
+
416
+ video_path = './examples/red-panda.mp4'
417
+ pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
418
+ pixel_values = pixel_values.to(torch.bfloat16).cuda()
419
+ video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
420
+ question = video_prefix + 'What is the red panda doing?'
421
+ # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
422
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
423
+ num_patches_list=num_patches_list, history=None, return_history=True)
424
+ print(f'User: {question}\nAssistant: {response}')
425
+
426
+ question = 'Describe this video in detail.'
427
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
428
+ num_patches_list=num_patches_list, history=history, return_history=True)
429
+ print(f'User: {question}\nAssistant: {response}')
430
+ ```
431
+
432
+ #### Streaming Output
433
+
434
+ Besides this method, you can also use the following code to get streamed output.
435
+
436
+ ```python
437
+ from transformers import TextIteratorStreamer
438
+ from threading import Thread
439
+
440
+ # Initialize the streamer
441
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
442
+ # Define the generation configuration
443
+ generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
444
+ # Start the model chat in a separate thread
445
+ thread = Thread(target=model.chat, kwargs=dict(
446
+ tokenizer=tokenizer, pixel_values=pixel_values, question=question,
447
+ history=None, return_history=False, generation_config=generation_config,
448
+ ))
449
+ thread.start()
450
+
451
+ # Initialize an empty string to store the generated text
452
+ generated_text = ''
453
+ # Loop through the streamer to get the new text as it is generated
454
+ for new_text in streamer:
455
+ if new_text == model.conv_template.sep:
456
+ break
457
+ generated_text += new_text
458
+ print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line
459
+ ```
460
+
461
+ ## Finetune
462
+
463
+ Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTurner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
464
+
465
+ ## Deployment
466
+
467
+ ### LMDeploy
468
+
469
+ LMDeploy is a toolkit for compressing, deploying, and serving LLMs & VLMs.
470
+
471
+ ```sh
472
+ pip install lmdeploy>=0.5.3
473
+ ```
474
+
475
+ LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
476
+
477
+ #### A 'Hello, world' Example
478
+
479
+ ```python
480
+ from lmdeploy import pipeline, TurbomindEngineConfig
481
+ from lmdeploy.vl import load_image
482
+
483
+ model = 'OpenGVLab/InternVL2-2B'
484
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
485
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
486
+ response = pipe(('describe this image', image))
487
+ print(response.text)
488
+ ```
489
+
490
+ If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
491
+
492
+ #### Multi-images Inference
493
+
494
+ When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
495
+
496
+ > Warning: Due to the scarcity of multi-image conversation data, the performance on multi-image tasks may be unstable, and it may require multiple attempts to achieve satisfactory results.
497
+
498
+ ```python
499
+ from lmdeploy import pipeline, TurbomindEngineConfig
500
+ from lmdeploy.vl import load_image
501
+ from lmdeploy.vl.constants import IMAGE_TOKEN
502
+
503
+ model = 'OpenGVLab/InternVL2-2B'
504
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
505
+
506
+ image_urls=[
507
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
508
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
509
+ ]
510
+
511
+ images = [load_image(img_url) for img_url in image_urls]
512
+ # Numbering images improves multi-image conversations
513
+ response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
514
+ print(response.text)
515
+ ```
516
+
517
+ #### Batch Prompts Inference
518
+
519
+ Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
520
+
521
+ ```python
522
+ from lmdeploy import pipeline, TurbomindEngineConfig
523
+ from lmdeploy.vl import load_image
524
+
525
+ model = 'OpenGVLab/InternVL2-2B'
526
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
527
+
528
+ image_urls=[
529
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
530
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
531
+ ]
532
+ prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
533
+ response = pipe(prompts)
534
+ print(response)
535
+ ```
536
+
537
+ #### Multi-turn Conversation
538
+
539
+ There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
540
+
541
+ ```python
542
+ from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
543
+ from lmdeploy.vl import load_image
544
+
545
+ model = 'OpenGVLab/InternVL2-2B'
546
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
547
+
548
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
549
+ gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
550
+ sess = pipe.chat(('describe this image', image), gen_config=gen_config)
551
+ print(sess.response.text)
552
+ sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
553
+ print(sess.response.text)
554
+ ```
555
+
556
+ #### Service
557
+
558
+ LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
559
+
560
+ ```shell
561
+ lmdeploy serve api_server OpenGVLab/InternVL2-2B --server-port 23333
562
+ ```
563
+
564
+ To use the OpenAI-style interface, you need to install OpenAI:
565
+
566
+ ```shell
567
+ pip install openai
568
+ ```
569
+
570
+ Then, use the code below to make the API call:
571
+
572
+ ```python
573
+ from openai import OpenAI
574
+
575
+ client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
576
+ model_name = client.models.list().data[0].id
577
+ response = client.chat.completions.create(
578
+ model=model_name,
579
+ messages=[{
580
+ 'role':
581
+ 'user',
582
+ 'content': [{
583
+ 'type': 'text',
584
+ 'text': 'describe this image',
585
+ }, {
586
+ 'type': 'image_url',
587
+ 'image_url': {
588
+ 'url':
589
+ 'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
590
+ },
591
+ }],
592
+ }],
593
+ temperature=0.8,
594
+ top_p=0.8)
595
+ print(response)
596
+ ```
597
+
598
+ ## License
599
+
600
+ This project is released under the MIT License. This project uses the pre-trained internlm2-chat-1_8b as a component, which is licensed under the Apache License 2.0.
601
+
602
+ ## Citation
603
+
604
+ If you find this project useful in your research, please consider citing:
605
+
606
+ ```BibTeX
607
+ @article{chen2024expanding,
608
+ title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
609
+ author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
610
+ journal={arXiv preprint arXiv:2412.05271},
611
+ year={2024}
612
+ }
613
+ @article{gao2024mini,
614
+ title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
615
+ author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
616
+ journal={arXiv preprint arXiv:2410.16261},
617
+ year={2024}
618
+ }
619
+ @article{chen2024far,
620
+ title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
621
+ author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
622
+ journal={arXiv preprint arXiv:2404.16821},
623
+ year={2024}
624
+ }
625
+ @inproceedings{chen2024internvl,
626
+ title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
627
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
628
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
629
+ pages={24185--24198},
630
+ year={2024}
631
+ }
632
+ ```
OpenGVLab/InternVL2-2B/added_tokens.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 92552,
3
+ "</img>": 92545,
4
+ "</quad>": 92548,
5
+ "</ref>": 92550,
6
+ "<IMG_CONTEXT>": 92546,
7
+ "<box>": 92551,
8
+ "<img>": 92544,
9
+ "<quad>": 92547,
10
+ "<ref>": 92549
11
+ }
OpenGVLab/InternVL2-2B/config.json ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "InternVLChatModel"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
8
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
9
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
10
+ },
11
+ "downsample_ratio": 0.5,
12
+ "dynamic_image_size": true,
13
+ "force_image_size": 448,
14
+ "llm_config": {
15
+ "_name_or_path": "internlm/internlm2-chat-1_8b",
16
+ "add_cross_attention": false,
17
+ "architectures": [
18
+ "InternLM2ForCausalLM"
19
+ ],
20
+ "attn_implementation": "flash_attention_2",
21
+ "auto_map": {
22
+ "AutoConfig": "configuration_internlm2.InternLM2Config",
23
+ "AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
24
+ "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM"
25
+ },
26
+ "bad_words_ids": null,
27
+ "begin_suppress_tokens": null,
28
+ "bias": false,
29
+ "bos_token_id": 1,
30
+ "chunk_size_feed_forward": 0,
31
+ "cross_attention_hidden_size": null,
32
+ "decoder_start_token_id": null,
33
+ "diversity_penalty": 0.0,
34
+ "do_sample": false,
35
+ "early_stopping": false,
36
+ "encoder_no_repeat_ngram_size": 0,
37
+ "eos_token_id": 2,
38
+ "exponential_decay_length_penalty": null,
39
+ "finetuning_task": null,
40
+ "forced_bos_token_id": null,
41
+ "forced_eos_token_id": null,
42
+ "hidden_act": "silu",
43
+ "hidden_size": 2048,
44
+ "id2label": {
45
+ "0": "LABEL_0",
46
+ "1": "LABEL_1"
47
+ },
48
+ "initializer_range": 0.02,
49
+ "intermediate_size": 8192,
50
+ "is_decoder": false,
51
+ "is_encoder_decoder": false,
52
+ "label2id": {
53
+ "LABEL_0": 0,
54
+ "LABEL_1": 1
55
+ },
56
+ "length_penalty": 1.0,
57
+ "max_length": 20,
58
+ "max_position_embeddings": 32768,
59
+ "min_length": 0,
60
+ "model_type": "internlm2",
61
+ "no_repeat_ngram_size": 0,
62
+ "num_attention_heads": 16,
63
+ "num_beam_groups": 1,
64
+ "num_beams": 1,
65
+ "num_hidden_layers": 24,
66
+ "num_key_value_heads": 8,
67
+ "num_return_sequences": 1,
68
+ "output_attentions": false,
69
+ "output_hidden_states": false,
70
+ "output_scores": false,
71
+ "pad_token_id": 2,
72
+ "prefix": null,
73
+ "problem_type": null,
74
+ "pruned_heads": {},
75
+ "remove_invalid_values": false,
76
+ "repetition_penalty": 1.0,
77
+ "return_dict": true,
78
+ "return_dict_in_generate": false,
79
+ "rms_norm_eps": 1e-05,
80
+ "rope_scaling": {
81
+ "factor": 2.0,
82
+ "type": "dynamic"
83
+ },
84
+ "rope_theta": 1000000,
85
+ "sep_token_id": null,
86
+ "suppress_tokens": null,
87
+ "task_specific_params": null,
88
+ "temperature": 1.0,
89
+ "tf_legacy_loss": false,
90
+ "tie_encoder_decoder": false,
91
+ "tie_word_embeddings": false,
92
+ "tokenizer_class": null,
93
+ "top_k": 50,
94
+ "top_p": 1.0,
95
+ "torch_dtype": "bfloat16",
96
+ "torchscript": false,
97
+ "transformers_version": "4.37.2",
98
+ "typical_p": 1.0,
99
+ "use_bfloat16": true,
100
+ "use_cache": true,
101
+ "vocab_size": 92553
102
+ },
103
+ "max_dynamic_patch": 12,
104
+ "min_dynamic_patch": 1,
105
+ "model_type": "internvl_chat",
106
+ "ps_version": "v2",
107
+ "select_layer": -1,
108
+ "template": "internlm2-chat",
109
+ "torch_dtype": "bfloat16",
110
+ "use_backbone_lora": 0,
111
+ "use_llm_lora": 0,
112
+ "use_thumbnail": true,
113
+ "vision_config": {
114
+ "architectures": [
115
+ "InternVisionModel"
116
+ ],
117
+ "attention_dropout": 0.0,
118
+ "drop_path_rate": 0.0,
119
+ "dropout": 0.0,
120
+ "hidden_act": "gelu",
121
+ "hidden_size": 1024,
122
+ "image_size": 448,
123
+ "initializer_factor": 1.0,
124
+ "initializer_range": 0.02,
125
+ "intermediate_size": 4096,
126
+ "layer_norm_eps": 1e-06,
127
+ "model_type": "intern_vit_6b",
128
+ "norm_type": "layer_norm",
129
+ "num_attention_heads": 16,
130
+ "num_channels": 3,
131
+ "num_hidden_layers": 24,
132
+ "output_attentions": false,
133
+ "output_hidden_states": false,
134
+ "patch_size": 14,
135
+ "qk_normalization": false,
136
+ "qkv_bias": true,
137
+ "return_dict": true,
138
+ "torch_dtype": "bfloat16",
139
+ "transformers_version": "4.37.2",
140
+ "use_bfloat16": true,
141
+ "use_flash_attn": true
142
+ }
143
+ }
OpenGVLab/InternVL2-2B/configuration_intern_vit.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import os
8
+ from typing import Union
9
+
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+
16
+ class InternVisionConfig(PretrainedConfig):
17
+ r"""
18
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
19
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
20
+
21
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
22
+ documentation from [`PretrainedConfig`] for more information.
23
+
24
+ Args:
25
+ num_channels (`int`, *optional*, defaults to 3):
26
+ Number of color channels in the input images (e.g., 3 for RGB).
27
+ patch_size (`int`, *optional*, defaults to 14):
28
+ The size (resolution) of each patch.
29
+ image_size (`int`, *optional*, defaults to 224):
30
+ The size (resolution) of each image.
31
+ qkv_bias (`bool`, *optional*, defaults to `False`):
32
+ Whether to add a bias to the queries and values in the self-attention layers.
33
+ hidden_size (`int`, *optional*, defaults to 3200):
34
+ Dimensionality of the encoder layers and the pooler layer.
35
+ num_attention_heads (`int`, *optional*, defaults to 25):
36
+ Number of attention heads for each attention layer in the Transformer encoder.
37
+ intermediate_size (`int`, *optional*, defaults to 12800):
38
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
39
+ qk_normalization (`bool`, *optional*, defaults to `True`):
40
+ Whether to normalize the queries and keys in the self-attention layers.
41
+ num_hidden_layers (`int`, *optional*, defaults to 48):
42
+ Number of hidden layers in the Transformer encoder.
43
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
44
+ Whether to use flash attention mechanism.
45
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
46
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
47
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
48
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
49
+ The epsilon used by the layer normalization layers.
50
+ dropout (`float`, *optional*, defaults to 0.0):
51
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
52
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
53
+ Dropout rate for stochastic depth.
54
+ attention_dropout (`float`, *optional*, defaults to 0.0):
55
+ The dropout ratio for the attention probabilities.
56
+ initializer_range (`float`, *optional*, defaults to 0.02):
57
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
58
+ initializer_factor (`float`, *optional*, defaults to 0.1):
59
+ A factor for layer scale.
60
+ """
61
+
62
+ model_type = 'intern_vit_6b'
63
+
64
+ def __init__(
65
+ self,
66
+ num_channels=3,
67
+ patch_size=14,
68
+ image_size=224,
69
+ qkv_bias=False,
70
+ hidden_size=3200,
71
+ num_attention_heads=25,
72
+ intermediate_size=12800,
73
+ qk_normalization=True,
74
+ num_hidden_layers=48,
75
+ use_flash_attn=True,
76
+ hidden_act='gelu',
77
+ norm_type='rms_norm',
78
+ layer_norm_eps=1e-6,
79
+ dropout=0.0,
80
+ drop_path_rate=0.0,
81
+ attention_dropout=0.0,
82
+ initializer_range=0.02,
83
+ initializer_factor=0.1,
84
+ **kwargs,
85
+ ):
86
+ super().__init__(**kwargs)
87
+
88
+ self.hidden_size = hidden_size
89
+ self.intermediate_size = intermediate_size
90
+ self.dropout = dropout
91
+ self.drop_path_rate = drop_path_rate
92
+ self.num_hidden_layers = num_hidden_layers
93
+ self.num_attention_heads = num_attention_heads
94
+ self.num_channels = num_channels
95
+ self.patch_size = patch_size
96
+ self.image_size = image_size
97
+ self.initializer_range = initializer_range
98
+ self.initializer_factor = initializer_factor
99
+ self.attention_dropout = attention_dropout
100
+ self.layer_norm_eps = layer_norm_eps
101
+ self.hidden_act = hidden_act
102
+ self.norm_type = norm_type
103
+ self.qkv_bias = qkv_bias
104
+ self.qk_normalization = qk_normalization
105
+ self.use_flash_attn = use_flash_attn
106
+
107
+ @classmethod
108
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
109
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
110
+
111
+ if 'vision_config' in config_dict:
112
+ config_dict = config_dict['vision_config']
113
+
114
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
115
+ logger.warning(
116
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
117
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
118
+ )
119
+
120
+ return cls.from_dict(config_dict, **kwargs)
OpenGVLab/InternVL2-2B/configuration_internlm2.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ InternLM2 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
+
25
+
26
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
27
+ class InternLM2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM2Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
70
+ Whether to tie weight embeddings
71
+ Example:
72
+
73
+ """
74
+ model_type = 'internlm2'
75
+ _auto_class = 'AutoConfig'
76
+
77
+ def __init__( # pylint: disable=W0102
78
+ self,
79
+ vocab_size=103168,
80
+ hidden_size=4096,
81
+ intermediate_size=11008,
82
+ num_hidden_layers=32,
83
+ num_attention_heads=32,
84
+ num_key_value_heads=None,
85
+ hidden_act='silu',
86
+ max_position_embeddings=2048,
87
+ initializer_range=0.02,
88
+ rms_norm_eps=1e-6,
89
+ use_cache=True,
90
+ pad_token_id=0,
91
+ bos_token_id=1,
92
+ eos_token_id=2,
93
+ tie_word_embeddings=False,
94
+ bias=True,
95
+ rope_theta=10000,
96
+ rope_scaling=None,
97
+ attn_implementation='eager',
98
+ **kwargs,
99
+ ):
100
+ self.vocab_size = vocab_size
101
+ self.max_position_embeddings = max_position_embeddings
102
+ self.hidden_size = hidden_size
103
+ self.intermediate_size = intermediate_size
104
+ self.num_hidden_layers = num_hidden_layers
105
+ self.num_attention_heads = num_attention_heads
106
+ self.bias = bias
107
+
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+ self.num_key_value_heads = num_key_value_heads
111
+
112
+ self.hidden_act = hidden_act
113
+ self.initializer_range = initializer_range
114
+ self.rms_norm_eps = rms_norm_eps
115
+ self.use_cache = use_cache
116
+ self.rope_theta = rope_theta
117
+ self.rope_scaling = rope_scaling
118
+ self._rope_scaling_validation()
119
+
120
+ self.attn_implementation = attn_implementation
121
+ if self.attn_implementation is None:
122
+ self.attn_implementation = 'eager'
123
+ super().__init__(
124
+ pad_token_id=pad_token_id,
125
+ bos_token_id=bos_token_id,
126
+ eos_token_id=eos_token_id,
127
+ tie_word_embeddings=tie_word_embeddings,
128
+ **kwargs,
129
+ )
130
+
131
+ def _rope_scaling_validation(self):
132
+ """
133
+ Validate the `rope_scaling` configuration.
134
+ """
135
+ if self.rope_scaling is None:
136
+ return
137
+
138
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
139
+ raise ValueError(
140
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
141
+ f'got {self.rope_scaling}'
142
+ )
143
+ rope_scaling_type = self.rope_scaling.get('type', None)
144
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
145
+ if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
146
+ raise ValueError(
147
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
148
+ )
149
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
150
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
OpenGVLab/InternVL2-2B/configuration_internvl_chat.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+ from .configuration_internlm2 import InternLM2Config
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+
19
+ class InternVLChatConfig(PretrainedConfig):
20
+ model_type = 'internvl_chat'
21
+ is_composition = True
22
+
23
+ def __init__(
24
+ self,
25
+ vision_config=None,
26
+ llm_config=None,
27
+ use_backbone_lora=0,
28
+ use_llm_lora=0,
29
+ select_layer=-1,
30
+ force_image_size=None,
31
+ downsample_ratio=0.5,
32
+ template=None,
33
+ dynamic_image_size=False,
34
+ use_thumbnail=False,
35
+ ps_version='v1',
36
+ min_dynamic_patch=1,
37
+ max_dynamic_patch=6,
38
+ **kwargs):
39
+ super().__init__(**kwargs)
40
+
41
+ if vision_config is None:
42
+ vision_config = {'architectures': ['InternVisionModel']}
43
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
44
+
45
+ if llm_config is None:
46
+ llm_config = {'architectures': ['InternLM2ForCausalLM']}
47
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
48
+
49
+ self.vision_config = InternVisionConfig(**vision_config)
50
+ if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
51
+ self.llm_config = LlamaConfig(**llm_config)
52
+ elif llm_config.get('architectures')[0] == 'InternLM2ForCausalLM':
53
+ self.llm_config = InternLM2Config(**llm_config)
54
+ else:
55
+ raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
56
+ self.use_backbone_lora = use_backbone_lora
57
+ self.use_llm_lora = use_llm_lora
58
+ self.select_layer = select_layer
59
+ self.force_image_size = force_image_size
60
+ self.downsample_ratio = downsample_ratio
61
+ self.template = template
62
+ self.dynamic_image_size = dynamic_image_size
63
+ self.use_thumbnail = use_thumbnail
64
+ self.ps_version = ps_version # pixel shuffle version
65
+ self.min_dynamic_patch = min_dynamic_patch
66
+ self.max_dynamic_patch = max_dynamic_patch
67
+
68
+ logger.info(f'vision_select_layer: {self.select_layer}')
69
+ logger.info(f'ps_version: {self.ps_version}')
70
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
71
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
72
+
73
+ def to_dict(self):
74
+ """
75
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
76
+
77
+ Returns:
78
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
79
+ """
80
+ output = copy.deepcopy(self.__dict__)
81
+ output['vision_config'] = self.vision_config.to_dict()
82
+ output['llm_config'] = self.llm_config.to_dict()
83
+ output['model_type'] = self.__class__.model_type
84
+ output['use_backbone_lora'] = self.use_backbone_lora
85
+ output['use_llm_lora'] = self.use_llm_lora
86
+ output['select_layer'] = self.select_layer
87
+ output['force_image_size'] = self.force_image_size
88
+ output['downsample_ratio'] = self.downsample_ratio
89
+ output['template'] = self.template
90
+ output['dynamic_image_size'] = self.dynamic_image_size
91
+ output['use_thumbnail'] = self.use_thumbnail
92
+ output['ps_version'] = self.ps_version
93
+ output['min_dynamic_patch'] = self.min_dynamic_patch
94
+ output['max_dynamic_patch'] = self.max_dynamic_patch
95
+
96
+ return output
OpenGVLab/InternVL2-2B/conversation.py ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+
7
+ Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
8
+ """
9
+
10
+ import dataclasses
11
+ from enum import IntEnum, auto
12
+ from typing import Dict, List, Tuple, Union
13
+
14
+
15
+ class SeparatorStyle(IntEnum):
16
+ """Separator styles."""
17
+
18
+ ADD_COLON_SINGLE = auto()
19
+ ADD_COLON_TWO = auto()
20
+ ADD_COLON_SPACE_SINGLE = auto()
21
+ NO_COLON_SINGLE = auto()
22
+ NO_COLON_TWO = auto()
23
+ ADD_NEW_LINE_SINGLE = auto()
24
+ LLAMA2 = auto()
25
+ CHATGLM = auto()
26
+ CHATML = auto()
27
+ CHATINTERN = auto()
28
+ DOLLY = auto()
29
+ RWKV = auto()
30
+ PHOENIX = auto()
31
+ ROBIN = auto()
32
+ FALCON_CHAT = auto()
33
+ CHATGLM3 = auto()
34
+ INTERNVL_ZH = auto()
35
+ MPT = auto()
36
+
37
+
38
+ @dataclasses.dataclass
39
+ class Conversation:
40
+ """A class that manages prompt templates and keeps all conversation history."""
41
+
42
+ # The name of this template
43
+ name: str
44
+ # The template of the system prompt
45
+ system_template: str = '{system_message}'
46
+ # The system message
47
+ system_message: str = ''
48
+ # The names of two roles
49
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
50
+ # All messages. Each item is (role, message).
51
+ messages: List[List[str]] = ()
52
+ # The number of few shot examples
53
+ offset: int = 0
54
+ # The separator style and configurations
55
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
56
+ sep: str = '\n'
57
+ sep2: str = None
58
+ # Stop criteria (the default one is EOS token)
59
+ stop_str: Union[str, List[str]] = None
60
+ # Stops generation if meeting any token in this list
61
+ stop_token_ids: List[int] = None
62
+
63
+ def get_prompt(self) -> str:
64
+ """Get the prompt for generation."""
65
+ system_prompt = self.system_template.format(system_message=self.system_message)
66
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
67
+ ret = system_prompt + self.sep
68
+ for role, message in self.messages:
69
+ if message:
70
+ ret += role + ': ' + message + self.sep
71
+ else:
72
+ ret += role + ':'
73
+ return ret
74
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
75
+ seps = [self.sep, self.sep2]
76
+ ret = system_prompt + seps[0]
77
+ for i, (role, message) in enumerate(self.messages):
78
+ if message:
79
+ ret += role + ': ' + message + seps[i % 2]
80
+ else:
81
+ ret += role + ':'
82
+ return ret
83
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
84
+ ret = system_prompt + self.sep
85
+ for role, message in self.messages:
86
+ if message:
87
+ ret += role + ': ' + message + self.sep
88
+ else:
89
+ ret += role + ': ' # must be end with a space
90
+ return ret
91
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
92
+ ret = '' if system_prompt == '' else system_prompt + self.sep
93
+ for role, message in self.messages:
94
+ if message:
95
+ ret += role + '\n' + message + self.sep
96
+ else:
97
+ ret += role + '\n'
98
+ return ret
99
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
100
+ ret = system_prompt
101
+ for role, message in self.messages:
102
+ if message:
103
+ ret += role + message + self.sep
104
+ else:
105
+ ret += role
106
+ return ret
107
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
108
+ seps = [self.sep, self.sep2]
109
+ ret = system_prompt
110
+ for i, (role, message) in enumerate(self.messages):
111
+ if message:
112
+ ret += role + message + seps[i % 2]
113
+ else:
114
+ ret += role
115
+ return ret
116
+ elif self.sep_style == SeparatorStyle.RWKV:
117
+ ret = system_prompt
118
+ for i, (role, message) in enumerate(self.messages):
119
+ if message:
120
+ ret += (
121
+ role
122
+ + ': '
123
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
124
+ )
125
+ ret += '\n\n'
126
+ else:
127
+ ret += role + ':'
128
+ return ret
129
+ elif self.sep_style == SeparatorStyle.LLAMA2:
130
+ seps = [self.sep, self.sep2]
131
+ if self.system_message:
132
+ ret = system_prompt
133
+ else:
134
+ ret = '[INST] '
135
+ for i, (role, message) in enumerate(self.messages):
136
+ tag = self.roles[i % 2]
137
+ if message:
138
+ if i == 0:
139
+ ret += message + ' '
140
+ else:
141
+ ret += tag + ' ' + message + seps[i % 2]
142
+ else:
143
+ ret += tag
144
+ return ret
145
+ elif self.sep_style == SeparatorStyle.CHATGLM:
146
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
147
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
148
+ round_add_n = 1 if self.name == 'chatglm2' else 0
149
+ if system_prompt:
150
+ ret = system_prompt + self.sep
151
+ else:
152
+ ret = ''
153
+
154
+ for i, (role, message) in enumerate(self.messages):
155
+ if i % 2 == 0:
156
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
157
+
158
+ if message:
159
+ ret += f'{role}:{message}{self.sep}'
160
+ else:
161
+ ret += f'{role}:'
162
+ return ret
163
+ elif self.sep_style == SeparatorStyle.CHATML:
164
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
165
+ for role, message in self.messages:
166
+ if message:
167
+ ret += role + '\n' + message + self.sep + '\n'
168
+ else:
169
+ ret += role + '\n'
170
+ return ret
171
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
172
+ ret = ''
173
+ if self.system_message:
174
+ ret += system_prompt
175
+ for role, message in self.messages:
176
+ if message:
177
+ ret += role + '\n' + ' ' + message
178
+ else:
179
+ ret += role
180
+ return ret
181
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
182
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
183
+ seps = [self.sep, self.sep2]
184
+ ret = system_prompt
185
+ for i, (role, message) in enumerate(self.messages):
186
+ # if i % 2 == 0:
187
+ # ret += "<s>"
188
+ if message:
189
+ ret += role + ':' + message + seps[i % 2] + '\n'
190
+ else:
191
+ ret += role + ':'
192
+ return ret
193
+ elif self.sep_style == SeparatorStyle.DOLLY:
194
+ seps = [self.sep, self.sep2]
195
+ ret = system_prompt
196
+ for i, (role, message) in enumerate(self.messages):
197
+ if message:
198
+ ret += role + ':\n' + message + seps[i % 2]
199
+ if i % 2 == 1:
200
+ ret += '\n\n'
201
+ else:
202
+ ret += role + ':\n'
203
+ return ret
204
+ elif self.sep_style == SeparatorStyle.PHOENIX:
205
+ ret = system_prompt
206
+ for role, message in self.messages:
207
+ if message:
208
+ ret += role + ': ' + '<s>' + message + '</s>'
209
+ else:
210
+ ret += role + ': ' + '<s>'
211
+ return ret
212
+ elif self.sep_style == SeparatorStyle.ROBIN:
213
+ ret = system_prompt + self.sep
214
+ for role, message in self.messages:
215
+ if message:
216
+ ret += role + ':\n' + message + self.sep
217
+ else:
218
+ ret += role + ':\n'
219
+ return ret
220
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
221
+ ret = ''
222
+ if self.system_message:
223
+ ret += system_prompt + self.sep
224
+ for role, message in self.messages:
225
+ if message:
226
+ ret += role + ': ' + message + self.sep
227
+ else:
228
+ ret += role + ':'
229
+
230
+ return ret
231
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
232
+ seps = [self.sep, self.sep2]
233
+ ret = self.system_message + seps[0]
234
+ for i, (role, message) in enumerate(self.messages):
235
+ if message:
236
+ ret += role + ': ' + message + seps[i % 2]
237
+ else:
238
+ ret += role + ':'
239
+ return ret
240
+ elif self.sep_style == SeparatorStyle.MPT:
241
+ ret = system_prompt + self.sep
242
+ for role, message in self.messages:
243
+ if message:
244
+ if type(message) is tuple:
245
+ message, _, _ = message
246
+ ret += role + message + self.sep
247
+ else:
248
+ ret += role
249
+ return ret
250
+ else:
251
+ raise ValueError(f'Invalid style: {self.sep_style}')
252
+
253
+ def set_system_message(self, system_message: str):
254
+ """Set the system message."""
255
+ self.system_message = system_message
256
+
257
+ def append_message(self, role: str, message: str):
258
+ """Append a new message."""
259
+ self.messages.append([role, message])
260
+
261
+ def update_last_message(self, message: str):
262
+ """Update the last output.
263
+
264
+ The last message is typically set to be None when constructing the prompt,
265
+ so we need to update it in-place after getting the response from a model.
266
+ """
267
+ self.messages[-1][1] = message
268
+
269
+ def to_gradio_chatbot(self):
270
+ """Convert the conversation to gradio chatbot format."""
271
+ ret = []
272
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
273
+ if i % 2 == 0:
274
+ ret.append([msg, None])
275
+ else:
276
+ ret[-1][-1] = msg
277
+ return ret
278
+
279
+ def to_openai_api_messages(self):
280
+ """Convert the conversation to OpenAI chat completion format."""
281
+ ret = [{'role': 'system', 'content': self.system_message}]
282
+
283
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
284
+ if i % 2 == 0:
285
+ ret.append({'role': 'user', 'content': msg})
286
+ else:
287
+ if msg is not None:
288
+ ret.append({'role': 'assistant', 'content': msg})
289
+ return ret
290
+
291
+ def copy(self):
292
+ return Conversation(
293
+ name=self.name,
294
+ system_template=self.system_template,
295
+ system_message=self.system_message,
296
+ roles=self.roles,
297
+ messages=[[x, y] for x, y in self.messages],
298
+ offset=self.offset,
299
+ sep_style=self.sep_style,
300
+ sep=self.sep,
301
+ sep2=self.sep2,
302
+ stop_str=self.stop_str,
303
+ stop_token_ids=self.stop_token_ids,
304
+ )
305
+
306
+ def dict(self):
307
+ return {
308
+ 'template_name': self.name,
309
+ 'system_message': self.system_message,
310
+ 'roles': self.roles,
311
+ 'messages': self.messages,
312
+ 'offset': self.offset,
313
+ }
314
+
315
+
316
+ # A global registry for all conversation templates
317
+ conv_templates: Dict[str, Conversation] = {}
318
+
319
+
320
+ def register_conv_template(template: Conversation, override: bool = False):
321
+ """Register a new conversation template."""
322
+ if not override:
323
+ assert (
324
+ template.name not in conv_templates
325
+ ), f'{template.name} has been registered.'
326
+
327
+ conv_templates[template.name] = template
328
+
329
+
330
+ def get_conv_template(name: str) -> Conversation:
331
+ """Get a conversation template."""
332
+ return conv_templates[name].copy()
333
+
334
+
335
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
336
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
337
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
338
+ # Therefore, they are completely equivalent during inference.
339
+ register_conv_template(
340
+ Conversation(
341
+ name='Hermes-2',
342
+ system_template='<|im_start|>system\n{system_message}',
343
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
344
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
345
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
346
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
347
+ sep_style=SeparatorStyle.MPT,
348
+ sep='<|im_end|>',
349
+ stop_str='<|endoftext|>',
350
+ )
351
+ )
352
+
353
+
354
+ register_conv_template(
355
+ Conversation(
356
+ name='internlm2-chat',
357
+ system_template='<|im_start|>system\n{system_message}',
358
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
359
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
360
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
361
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
362
+ sep_style=SeparatorStyle.MPT,
363
+ sep='<|im_end|>',
364
+ )
365
+ )
366
+
367
+
368
+ register_conv_template(
369
+ Conversation(
370
+ name='phi3-chat',
371
+ system_template='<|system|>\n{system_message}',
372
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
373
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
374
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
375
+ roles=('<|user|>\n', '<|assistant|>\n'),
376
+ sep_style=SeparatorStyle.MPT,
377
+ sep='<|end|>',
378
+ )
379
+ )
380
+
381
+
382
+ register_conv_template(
383
+ Conversation(
384
+ name='internvl2_5',
385
+ system_template='<|im_start|>system\n{system_message}',
386
+ system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
387
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
388
+ sep_style=SeparatorStyle.MPT,
389
+ sep='<|im_end|>\n',
390
+ )
391
+ )
OpenGVLab/InternVL2-2B/examples/image1.jpg ADDED
OpenGVLab/InternVL2-2B/examples/image2.jpg ADDED

Git LFS Details

  • SHA256: 08487494b8dc08d44bc36491adf3ab89ff30d13a3122da86f3cd67cad89eeee8
  • Pointer size: 131 Bytes
  • Size of remote file: 126 kB
OpenGVLab/InternVL2-2B/examples/red-panda.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d921c07bb97224d65a37801541d246067f0d506f08723ffa1ad85c217907ccb8
3
+ size 1867237
OpenGVLab/InternVL2-2B/generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.37.2",
4
+ "eos_token_id": [
5
+ 92542,
6
+ 92543
7
+ ]
8
+ }
OpenGVLab/InternVL2-2B/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c57c830f03c9141b77b70f84735a0473458a0ebf99250515b0962f20cd9fa3dc
3
+ size 4411571040
OpenGVLab/InternVL2-2B/modeling_intern_vit.py ADDED
@@ -0,0 +1,430 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ from typing import Optional, Tuple, Union
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint
12
+ from einops import rearrange
13
+ from timm.models.layers import DropPath
14
+ from torch import nn
15
+ from transformers.activations import ACT2FN
16
+ from transformers.modeling_outputs import (BaseModelOutput,
17
+ BaseModelOutputWithPooling)
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.utils import logging
20
+
21
+ from .configuration_intern_vit import InternVisionConfig
22
+
23
+ try:
24
+ from flash_attn.bert_padding import pad_input, unpad_input
25
+ from flash_attn.flash_attn_interface import \
26
+ flash_attn_varlen_qkvpacked_func
27
+ has_flash_attn = True
28
+ except:
29
+ print('FlashAttention2 is not installed.')
30
+ has_flash_attn = False
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+
35
+ class FlashAttention(nn.Module):
36
+ """Implement the scaled dot product attention with softmax.
37
+ Arguments
38
+ ---------
39
+ softmax_scale: The temperature to use for the softmax attention.
40
+ (default: 1/sqrt(d_keys) where d_keys is computed at
41
+ runtime)
42
+ attention_dropout: The dropout rate to apply to the attention
43
+ (default: 0.0)
44
+ """
45
+
46
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
47
+ super().__init__()
48
+ self.softmax_scale = softmax_scale
49
+ self.dropout_p = attention_dropout
50
+
51
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
52
+ max_s=None, need_weights=False):
53
+ """Implements the multihead softmax attention.
54
+ Arguments
55
+ ---------
56
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
57
+ if unpadded: (nnz, 3, h, d)
58
+ key_padding_mask: a bool tensor of shape (B, S)
59
+ """
60
+ assert not need_weights
61
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
62
+ assert qkv.is_cuda
63
+
64
+ if cu_seqlens is None:
65
+ batch_size = qkv.shape[0]
66
+ seqlen = qkv.shape[1]
67
+ if key_padding_mask is None:
68
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
69
+ max_s = seqlen
70
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
71
+ device=qkv.device)
72
+ output = flash_attn_varlen_qkvpacked_func(
73
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
74
+ softmax_scale=self.softmax_scale, causal=causal
75
+ )
76
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
77
+ else:
78
+ nheads = qkv.shape[-2]
79
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
80
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
81
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
82
+ output_unpad = flash_attn_varlen_qkvpacked_func(
83
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
84
+ softmax_scale=self.softmax_scale, causal=causal
85
+ )
86
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
87
+ indices, batch_size, seqlen),
88
+ 'b s (h d) -> b s h d', h=nheads)
89
+ else:
90
+ assert max_s is not None
91
+ output = flash_attn_varlen_qkvpacked_func(
92
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
93
+ softmax_scale=self.softmax_scale, causal=causal
94
+ )
95
+
96
+ return output, None
97
+
98
+
99
+ class InternRMSNorm(nn.Module):
100
+ def __init__(self, hidden_size, eps=1e-6):
101
+ super().__init__()
102
+ self.weight = nn.Parameter(torch.ones(hidden_size))
103
+ self.variance_epsilon = eps
104
+
105
+ def forward(self, hidden_states):
106
+ input_dtype = hidden_states.dtype
107
+ hidden_states = hidden_states.to(torch.float32)
108
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
109
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
110
+ return self.weight * hidden_states.to(input_dtype)
111
+
112
+
113
+ try:
114
+ from apex.normalization import FusedRMSNorm
115
+
116
+ InternRMSNorm = FusedRMSNorm # noqa
117
+
118
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
119
+ except ImportError:
120
+ # using the normal InternRMSNorm
121
+ pass
122
+ except Exception:
123
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
124
+ pass
125
+
126
+
127
+ NORM2FN = {
128
+ 'rms_norm': InternRMSNorm,
129
+ 'layer_norm': nn.LayerNorm,
130
+ }
131
+
132
+
133
+ class InternVisionEmbeddings(nn.Module):
134
+ def __init__(self, config: InternVisionConfig):
135
+ super().__init__()
136
+ self.config = config
137
+ self.embed_dim = config.hidden_size
138
+ self.image_size = config.image_size
139
+ self.patch_size = config.patch_size
140
+
141
+ self.class_embedding = nn.Parameter(
142
+ torch.randn(1, 1, self.embed_dim),
143
+ )
144
+
145
+ self.patch_embedding = nn.Conv2d(
146
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
147
+ )
148
+
149
+ self.num_patches = (self.image_size // self.patch_size) ** 2
150
+ self.num_positions = self.num_patches + 1
151
+
152
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
153
+
154
+ def _get_pos_embed(self, pos_embed, H, W):
155
+ target_dtype = pos_embed.dtype
156
+ pos_embed = pos_embed.float().reshape(
157
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
158
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
159
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
160
+ return pos_embed
161
+
162
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
163
+ target_dtype = self.patch_embedding.weight.dtype
164
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
165
+ batch_size, _, height, width = patch_embeds.shape
166
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
167
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
168
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
169
+ position_embedding = torch.cat([
170
+ self.position_embedding[:, :1, :],
171
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
172
+ ], dim=1)
173
+ embeddings = embeddings + position_embedding.to(target_dtype)
174
+ return embeddings
175
+
176
+
177
+ class InternAttention(nn.Module):
178
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
179
+
180
+ def __init__(self, config: InternVisionConfig):
181
+ super().__init__()
182
+ self.config = config
183
+ self.embed_dim = config.hidden_size
184
+ self.num_heads = config.num_attention_heads
185
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
186
+ if config.use_flash_attn and not has_flash_attn:
187
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
188
+ self.head_dim = self.embed_dim // self.num_heads
189
+ if self.head_dim * self.num_heads != self.embed_dim:
190
+ raise ValueError(
191
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
192
+ f' {self.num_heads}).'
193
+ )
194
+
195
+ self.scale = self.head_dim ** -0.5
196
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
197
+ self.attn_drop = nn.Dropout(config.attention_dropout)
198
+ self.proj_drop = nn.Dropout(config.dropout)
199
+
200
+ self.qk_normalization = config.qk_normalization
201
+
202
+ if self.qk_normalization:
203
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
205
+
206
+ if self.use_flash_attn:
207
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
208
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
209
+
210
+ def _naive_attn(self, x):
211
+ B, N, C = x.shape
212
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
213
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
214
+
215
+ if self.qk_normalization:
216
+ B_, H_, N_, D_ = q.shape
217
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
219
+
220
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
221
+ attn = attn.softmax(dim=-1)
222
+ attn = self.attn_drop(attn)
223
+
224
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
225
+ x = self.proj(x)
226
+ x = self.proj_drop(x)
227
+ return x
228
+
229
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
230
+ qkv = self.qkv(x)
231
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
232
+
233
+ if self.qk_normalization:
234
+ q, k, v = qkv.unbind(2)
235
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
236
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
237
+ qkv = torch.stack([q, k, v], dim=2)
238
+
239
+ context, _ = self.inner_attn(
240
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
241
+ )
242
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
243
+ outs = self.proj_drop(outs)
244
+ return outs
245
+
246
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
247
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
248
+ return x
249
+
250
+
251
+ class InternMLP(nn.Module):
252
+ def __init__(self, config: InternVisionConfig):
253
+ super().__init__()
254
+ self.config = config
255
+ self.act = ACT2FN[config.hidden_act]
256
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
257
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
258
+
259
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
260
+ hidden_states = self.fc1(hidden_states)
261
+ hidden_states = self.act(hidden_states)
262
+ hidden_states = self.fc2(hidden_states)
263
+ return hidden_states
264
+
265
+
266
+ class InternVisionEncoderLayer(nn.Module):
267
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
268
+ super().__init__()
269
+ self.embed_dim = config.hidden_size
270
+ self.intermediate_size = config.intermediate_size
271
+ self.norm_type = config.norm_type
272
+
273
+ self.attn = InternAttention(config)
274
+ self.mlp = InternMLP(config)
275
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
277
+
278
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
280
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
282
+
283
+ def forward(
284
+ self,
285
+ hidden_states: torch.Tensor,
286
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
287
+ """
288
+ Args:
289
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
290
+ """
291
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
292
+
293
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
294
+
295
+ return hidden_states
296
+
297
+
298
+ class InternVisionEncoder(nn.Module):
299
+ """
300
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
301
+ [`InternEncoderLayer`].
302
+
303
+ Args:
304
+ config (`InternConfig`):
305
+ The corresponding vision configuration for the `InternEncoder`.
306
+ """
307
+
308
+ def __init__(self, config: InternVisionConfig):
309
+ super().__init__()
310
+ self.config = config
311
+ # stochastic depth decay rule
312
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
313
+ self.layers = nn.ModuleList([
314
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
315
+ self.gradient_checkpointing = True
316
+
317
+ def forward(
318
+ self,
319
+ inputs_embeds,
320
+ output_hidden_states: Optional[bool] = None,
321
+ return_dict: Optional[bool] = None,
322
+ ) -> Union[Tuple, BaseModelOutput]:
323
+ r"""
324
+ Args:
325
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
326
+ Embedded representation of the inputs. Should be float, not int tokens.
327
+ output_hidden_states (`bool`, *optional*):
328
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
329
+ for more detail.
330
+ return_dict (`bool`, *optional*):
331
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
332
+ """
333
+ output_hidden_states = (
334
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
335
+ )
336
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
337
+
338
+ encoder_states = () if output_hidden_states else None
339
+ hidden_states = inputs_embeds
340
+
341
+ for idx, encoder_layer in enumerate(self.layers):
342
+ if output_hidden_states:
343
+ encoder_states = encoder_states + (hidden_states,)
344
+ if self.gradient_checkpointing and self.training:
345
+ layer_outputs = torch.utils.checkpoint.checkpoint(
346
+ encoder_layer,
347
+ hidden_states)
348
+ else:
349
+ layer_outputs = encoder_layer(
350
+ hidden_states,
351
+ )
352
+ hidden_states = layer_outputs
353
+
354
+ if output_hidden_states:
355
+ encoder_states = encoder_states + (hidden_states,)
356
+
357
+ if not return_dict:
358
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
359
+ return BaseModelOutput(
360
+ last_hidden_state=hidden_states, hidden_states=encoder_states
361
+ )
362
+
363
+
364
+ class InternVisionModel(PreTrainedModel):
365
+ main_input_name = 'pixel_values'
366
+ _supports_flash_attn_2 = True
367
+ config_class = InternVisionConfig
368
+ _no_split_modules = ['InternVisionEncoderLayer']
369
+
370
+ def __init__(self, config: InternVisionConfig):
371
+ super().__init__(config)
372
+ self.config = config
373
+
374
+ self.embeddings = InternVisionEmbeddings(config)
375
+ self.encoder = InternVisionEncoder(config)
376
+
377
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
378
+ pos_emb = self.embeddings.position_embedding
379
+ _, num_positions, embed_dim = pos_emb.shape
380
+ cls_emb = pos_emb[:, :1, :]
381
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
382
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
383
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
384
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
385
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
386
+ self.embeddings.image_size = new_size
387
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
388
+
389
+ def get_input_embeddings(self):
390
+ return self.embeddings
391
+
392
+ def forward(
393
+ self,
394
+ pixel_values: Optional[torch.FloatTensor] = None,
395
+ output_hidden_states: Optional[bool] = None,
396
+ return_dict: Optional[bool] = None,
397
+ pixel_embeds: Optional[torch.FloatTensor] = None,
398
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
399
+ output_hidden_states = (
400
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
401
+ )
402
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
403
+
404
+ if pixel_values is None and pixel_embeds is None:
405
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
406
+
407
+ if pixel_embeds is not None:
408
+ hidden_states = pixel_embeds
409
+ else:
410
+ if len(pixel_values.shape) == 4:
411
+ hidden_states = self.embeddings(pixel_values)
412
+ else:
413
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
414
+ encoder_outputs = self.encoder(
415
+ inputs_embeds=hidden_states,
416
+ output_hidden_states=output_hidden_states,
417
+ return_dict=return_dict,
418
+ )
419
+ last_hidden_state = encoder_outputs.last_hidden_state
420
+ pooled_output = last_hidden_state[:, 0, :]
421
+
422
+ if not return_dict:
423
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
424
+
425
+ return BaseModelOutputWithPooling(
426
+ last_hidden_state=last_hidden_state,
427
+ pooler_output=pooled_output,
428
+ hidden_states=encoder_outputs.hidden_states,
429
+ attentions=encoder_outputs.attentions,
430
+ )
OpenGVLab/InternVL2-2B/modeling_internlm2.py ADDED
@@ -0,0 +1,1415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ SequenceClassifierOutputWithPast)
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (add_start_docstrings,
35
+ add_start_docstrings_to_model_forward, logging,
36
+ replace_return_docstrings)
37
+
38
+ try:
39
+ from transformers.generation.streamers import BaseStreamer
40
+ except: # noqa # pylint: disable=bare-except
41
+ BaseStreamer = None
42
+
43
+ from .configuration_internlm2 import InternLM2Config
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CONFIG_FOR_DOC = 'InternLM2Config'
48
+
49
+ flash_attn_func, flash_attn_varlen_func = None, None
50
+ pad_input, index_first_axis, unpad_input = None, None, None
51
+ try:
52
+ from flash_attn import flash_attn_func as _flash_attn_func
53
+ from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
54
+ from flash_attn.bert_padding import index_first_axis as _index_first_axis
55
+ from flash_attn.bert_padding import pad_input as _pad_input
56
+ from flash_attn.bert_padding import unpad_input as _unpad_input
57
+
58
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
59
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
60
+ has_flash_attn = True
61
+ except:
62
+ has_flash_attn = False
63
+
64
+
65
+ def _import_flash_attn():
66
+ global flash_attn_func, flash_attn_varlen_func
67
+ global pad_input, index_first_axis, unpad_input
68
+ try:
69
+ from flash_attn import flash_attn_func as _flash_attn_func
70
+ from flash_attn import \
71
+ flash_attn_varlen_func as _flash_attn_varlen_func
72
+ from flash_attn.bert_padding import \
73
+ index_first_axis as _index_first_axis
74
+ from flash_attn.bert_padding import pad_input as _pad_input
75
+ from flash_attn.bert_padding import unpad_input as _unpad_input
76
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
77
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
78
+ except ImportError:
79
+ raise ImportError('flash_attn is not installed.')
80
+
81
+
82
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
83
+ def _get_unpad_data(attention_mask):
84
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
85
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
86
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
87
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
88
+ return (
89
+ indices,
90
+ cu_seqlens,
91
+ max_seqlen_in_batch,
92
+ )
93
+
94
+
95
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
96
+ def _make_causal_mask(
97
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
98
+ ):
99
+ """
100
+ Make causal mask used for bi-directional self-attention.
101
+ """
102
+ bsz, tgt_len = input_ids_shape
103
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
104
+ mask_cond = torch.arange(mask.size(-1), device=device)
105
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
106
+ mask = mask.to(dtype)
107
+
108
+ if past_key_values_length > 0:
109
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
110
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
111
+
112
+
113
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
114
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
115
+ """
116
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
117
+ """
118
+ bsz, src_len = mask.size()
119
+ tgt_len = tgt_len if tgt_len is not None else src_len
120
+
121
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
122
+
123
+ inverted_mask = 1.0 - expanded_mask
124
+
125
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
126
+
127
+
128
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
129
+ class InternLM2RMSNorm(nn.Module):
130
+ def __init__(self, hidden_size, eps=1e-6):
131
+ """
132
+ InternLM2RMSNorm is equivalent to T5LayerNorm
133
+ """
134
+ super().__init__()
135
+ self.weight = nn.Parameter(torch.ones(hidden_size))
136
+ self.variance_epsilon = eps
137
+
138
+ def forward(self, hidden_states):
139
+ input_dtype = hidden_states.dtype
140
+ hidden_states = hidden_states.to(torch.float32)
141
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
142
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
143
+ return self.weight * hidden_states.to(input_dtype)
144
+
145
+
146
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
147
+ class InternLM2RotaryEmbedding(nn.Module):
148
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
149
+ super().__init__()
150
+
151
+ self.dim = dim
152
+ self.max_position_embeddings = max_position_embeddings
153
+ self.base = base
154
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
155
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
156
+
157
+ # Build here to make `torch.jit.trace` work.
158
+ self._set_cos_sin_cache(
159
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
160
+ )
161
+
162
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
163
+ self.max_seq_len_cached = seq_len
164
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
165
+
166
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
167
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
168
+ emb = torch.cat((freqs, freqs), dim=-1)
169
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
170
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
171
+
172
+ def forward(self, x, seq_len=None):
173
+ # x: [bs, num_attention_heads, seq_len, head_size]
174
+ if seq_len > self.max_seq_len_cached:
175
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
176
+
177
+ return (
178
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
179
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
180
+ )
181
+
182
+
183
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
184
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
185
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
186
+
187
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
188
+ self.scaling_factor = scaling_factor
189
+ super().__init__(dim, max_position_embeddings, base, device)
190
+
191
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
192
+ self.max_seq_len_cached = seq_len
193
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
194
+ t = t / self.scaling_factor
195
+
196
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
197
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
198
+ emb = torch.cat((freqs, freqs), dim=-1)
199
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
200
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
201
+
202
+
203
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
204
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
205
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
206
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
207
+ """
208
+
209
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
210
+ self.scaling_factor = scaling_factor
211
+ super().__init__(dim, max_position_embeddings, base, device)
212
+
213
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
214
+ self.max_seq_len_cached = seq_len
215
+
216
+ if seq_len > self.max_position_embeddings:
217
+ base = self.base * (
218
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
219
+ ) ** (self.dim / (self.dim - 2))
220
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
221
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
222
+
223
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
224
+
225
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
226
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
227
+ emb = torch.cat((freqs, freqs), dim=-1)
228
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
229
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
230
+
231
+
232
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
233
+ def rotate_half(x):
234
+ """Rotates half the hidden dims of the input."""
235
+ x1 = x[..., : x.shape[-1] // 2]
236
+ x2 = x[..., x.shape[-1] // 2 :]
237
+ return torch.cat((-x2, x1), dim=-1)
238
+
239
+
240
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
241
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
242
+ """Applies Rotary Position Embedding to the query and key tensors."""
243
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
244
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
245
+ q_embed = (q * cos) + (rotate_half(q) * sin)
246
+ k_embed = (k * cos) + (rotate_half(k) * sin)
247
+ return q_embed, k_embed
248
+
249
+
250
+ class InternLM2MLP(nn.Module):
251
+ def __init__(self, config):
252
+ super().__init__()
253
+ self.config = config
254
+ self.hidden_size = config.hidden_size
255
+ self.intermediate_size = config.intermediate_size
256
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
257
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
258
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
259
+ self.act_fn = ACT2FN[config.hidden_act]
260
+
261
+ def forward(self, x):
262
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
263
+
264
+ return down_proj
265
+
266
+
267
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
268
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
269
+ """
270
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
271
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
272
+ """
273
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
274
+ if n_rep == 1:
275
+ return hidden_states
276
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
277
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
278
+
279
+
280
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
281
+ class InternLM2Attention(nn.Module):
282
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
283
+
284
+ def __init__(self, config: InternLM2Config):
285
+ super().__init__()
286
+ self.config = config
287
+ self.hidden_size = config.hidden_size
288
+ self.num_heads = config.num_attention_heads
289
+ self.head_dim = self.hidden_size // self.num_heads
290
+ self.num_key_value_heads = config.num_key_value_heads
291
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
292
+ self.max_position_embeddings = config.max_position_embeddings
293
+ self.is_causal = True
294
+
295
+ if (self.head_dim * self.num_heads) != self.hidden_size:
296
+ raise ValueError(
297
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
298
+ f' and `num_heads`: {self.num_heads}).'
299
+ )
300
+
301
+ self.wqkv = nn.Linear(
302
+ self.hidden_size,
303
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
304
+ bias=config.bias,
305
+ )
306
+
307
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
308
+ self._init_rope()
309
+
310
+ def _init_rope(self):
311
+ if self.config.rope_scaling is None:
312
+ self.rotary_emb = InternLM2RotaryEmbedding(
313
+ self.head_dim,
314
+ max_position_embeddings=self.max_position_embeddings,
315
+ base=self.config.rope_theta,
316
+ )
317
+ else:
318
+ scaling_type = self.config.rope_scaling['type']
319
+ scaling_factor = self.config.rope_scaling['factor']
320
+ if scaling_type == 'dynamic':
321
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
322
+ self.head_dim,
323
+ max_position_embeddings=self.max_position_embeddings,
324
+ base=self.config.rope_theta,
325
+ scaling_factor=scaling_factor,
326
+ )
327
+ elif scaling_type == 'linear':
328
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
329
+ self.head_dim,
330
+ max_position_embeddings=self.max_position_embeddings,
331
+ base=self.config.rope_theta,
332
+ scaling_factor=scaling_factor,
333
+ )
334
+ else:
335
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
336
+ return self.rotary_emb
337
+
338
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
339
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
340
+
341
+ def forward(
342
+ self,
343
+ hidden_states: torch.Tensor,
344
+ attention_mask: Optional[torch.Tensor] = None,
345
+ position_ids: Optional[torch.LongTensor] = None,
346
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
347
+ output_attentions: bool = False,
348
+ use_cache: bool = False,
349
+ **kwargs,
350
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
351
+ if 'padding_mask' in kwargs:
352
+ warnings.warn(
353
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
354
+ 'Please make sure use `attention_mask` instead.`'
355
+ )
356
+
357
+ bsz, q_len, _ = hidden_states.size()
358
+
359
+ qkv_states = self.wqkv(hidden_states)
360
+
361
+ qkv_states = rearrange(
362
+ qkv_states,
363
+ 'b q (h gs d) -> b q h gs d',
364
+ gs=2 + self.num_key_value_groups,
365
+ d=self.head_dim,
366
+ )
367
+
368
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
369
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
370
+ key_states = qkv_states[..., -2, :]
371
+ value_states = qkv_states[..., -1, :]
372
+
373
+ query_states = query_states.transpose(1, 2)
374
+ key_states = key_states.transpose(1, 2)
375
+ value_states = value_states.transpose(1, 2)
376
+
377
+ kv_seq_len = key_states.shape[-2]
378
+ if past_key_value is not None:
379
+ kv_seq_len += past_key_value[0].shape[-2]
380
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
381
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
382
+
383
+ if past_key_value is not None:
384
+ # reuse k, v, self_attention
385
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
386
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
387
+
388
+ past_key_value = (key_states, value_states) if use_cache else None
389
+
390
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
391
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
392
+
393
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
394
+
395
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
396
+ raise ValueError(
397
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
398
+ f' {attn_weights.size()}'
399
+ )
400
+
401
+ if attention_mask is not None:
402
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
403
+ raise ValueError(
404
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
405
+ )
406
+ attn_weights = attn_weights + attention_mask
407
+
408
+ # upcast attention to fp32
409
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
410
+ attn_output = torch.matmul(attn_weights, value_states)
411
+
412
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
413
+ raise ValueError(
414
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
415
+ f' {attn_output.size()}'
416
+ )
417
+
418
+ attn_output = attn_output.transpose(1, 2).contiguous()
419
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
420
+
421
+ attn_output = self.wo(attn_output)
422
+
423
+ if not output_attentions:
424
+ attn_weights = None
425
+
426
+ return attn_output, attn_weights, past_key_value
427
+
428
+
429
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
430
+ class InternLM2FlashAttention2(InternLM2Attention):
431
+ """
432
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
433
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
434
+ flash attention and deal with padding tokens in case the input contains any of them.
435
+ """
436
+
437
+ def forward(
438
+ self,
439
+ hidden_states: torch.Tensor,
440
+ attention_mask: Optional[torch.LongTensor] = None,
441
+ position_ids: Optional[torch.LongTensor] = None,
442
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
443
+ output_attentions: bool = False,
444
+ use_cache: bool = False,
445
+ **kwargs,
446
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
447
+ # InternLM2FlashAttention2 attention does not support output_attentions
448
+ if 'padding_mask' in kwargs:
449
+ warnings.warn(
450
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
451
+ 'Please make sure use `attention_mask` instead.`'
452
+ )
453
+
454
+ # overwrite attention_mask with padding_mask
455
+ attention_mask = kwargs.pop('padding_mask')
456
+
457
+ output_attentions = False
458
+
459
+ bsz, q_len, _ = hidden_states.size()
460
+
461
+ qkv_states = self.wqkv(hidden_states)
462
+
463
+ qkv_states = rearrange(
464
+ qkv_states,
465
+ 'b q (h gs d) -> b q h gs d',
466
+ gs=2 + self.num_key_value_groups,
467
+ d=self.head_dim,
468
+ )
469
+
470
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
471
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
472
+ key_states = qkv_states[..., -2, :]
473
+ value_states = qkv_states[..., -1, :]
474
+
475
+ query_states = query_states.transpose(1, 2)
476
+ key_states = key_states.transpose(1, 2)
477
+ value_states = value_states.transpose(1, 2)
478
+
479
+ kv_seq_len = key_states.shape[-2]
480
+ if past_key_value is not None:
481
+ kv_seq_len += past_key_value[0].shape[-2]
482
+
483
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
484
+
485
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
486
+
487
+ if past_key_value is not None:
488
+ # reuse k, v, self_attention
489
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
490
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
491
+
492
+ past_key_value = (key_states, value_states) if use_cache else None
493
+
494
+ query_states = query_states.transpose(1, 2)
495
+ key_states = key_states.transpose(1, 2)
496
+ value_states = value_states.transpose(1, 2)
497
+
498
+ attn_output = self._flash_attention_forward(
499
+ query_states, key_states, value_states, attention_mask, q_len
500
+ )
501
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
502
+ attn_output = self.wo(attn_output)
503
+
504
+ if not output_attentions:
505
+ attn_weights = None
506
+
507
+ return attn_output, attn_weights, past_key_value
508
+
509
+ def _flash_attention_forward(
510
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
511
+ ):
512
+ """
513
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
514
+ first unpad the input, then computes the attention scores and pad the final attention scores.
515
+
516
+ Args:
517
+ query_states (`torch.Tensor`):
518
+ Input query states to be passed to Flash Attention API
519
+ key_states (`torch.Tensor`):
520
+ Input key states to be passed to Flash Attention API
521
+ value_states (`torch.Tensor`):
522
+ Input value states to be passed to Flash Attention API
523
+ attention_mask (`torch.Tensor`):
524
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
525
+ position of padding tokens and 1 for the position of non-padding tokens.
526
+ dropout (`int`, *optional*):
527
+ Attention dropout
528
+ softmax_scale (`float`, *optional*):
529
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
530
+ """
531
+ # Contains at least one padding token in the sequence
532
+ causal = self.is_causal and query_length != 1
533
+ if attention_mask is not None:
534
+ batch_size = query_states.shape[0]
535
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
536
+ query_states, key_states, value_states, attention_mask, query_length
537
+ )
538
+
539
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
540
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
541
+
542
+ attn_output_unpad = flash_attn_varlen_func(
543
+ query_states,
544
+ key_states,
545
+ value_states,
546
+ cu_seqlens_q=cu_seqlens_q,
547
+ cu_seqlens_k=cu_seqlens_k,
548
+ max_seqlen_q=max_seqlen_in_batch_q,
549
+ max_seqlen_k=max_seqlen_in_batch_k,
550
+ dropout_p=dropout,
551
+ softmax_scale=softmax_scale,
552
+ causal=causal,
553
+ )
554
+
555
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
556
+ else:
557
+ attn_output = flash_attn_func(
558
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
559
+ )
560
+
561
+ return attn_output
562
+
563
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
564
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
565
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
566
+
567
+ key_layer = index_first_axis(
568
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
569
+ )
570
+ value_layer = index_first_axis(
571
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
572
+ )
573
+
574
+ if query_length == kv_seq_len:
575
+ query_layer = index_first_axis(
576
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
577
+ )
578
+ cu_seqlens_q = cu_seqlens_k
579
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
580
+ indices_q = indices_k
581
+ elif query_length == 1:
582
+ max_seqlen_in_batch_q = 1
583
+ cu_seqlens_q = torch.arange(
584
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
585
+ ) # There is a memcpy here, that is very bad.
586
+ indices_q = cu_seqlens_q[:-1]
587
+ query_layer = query_layer.squeeze(1)
588
+ else:
589
+ # The -q_len: slice assumes left padding.
590
+ attention_mask = attention_mask[:, -query_length:]
591
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
592
+
593
+ return (
594
+ query_layer,
595
+ key_layer,
596
+ value_layer,
597
+ indices_q.to(torch.int64),
598
+ (cu_seqlens_q, cu_seqlens_k),
599
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
600
+ )
601
+
602
+
603
+ INTERNLM2_ATTENTION_CLASSES = {
604
+ 'eager': InternLM2Attention,
605
+ 'flash_attention_2': InternLM2FlashAttention2,
606
+ }
607
+
608
+
609
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
610
+ class InternLM2DecoderLayer(nn.Module):
611
+ def __init__(self, config: InternLM2Config):
612
+ super().__init__()
613
+ self.hidden_size = config.hidden_size
614
+
615
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
616
+
617
+ self.feed_forward = InternLM2MLP(config)
618
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
619
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
620
+
621
+ def forward(
622
+ self,
623
+ hidden_states: torch.Tensor,
624
+ attention_mask: Optional[torch.Tensor] = None,
625
+ position_ids: Optional[torch.LongTensor] = None,
626
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
627
+ output_attentions: Optional[bool] = False,
628
+ use_cache: Optional[bool] = False,
629
+ **kwargs,
630
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
631
+ """
632
+ Args:
633
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
634
+ attention_mask (`torch.FloatTensor`, *optional*):
635
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
636
+ query_sequence_length, key_sequence_length)` if default attention is used.
637
+ output_attentions (`bool`, *optional*):
638
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
639
+ returned tensors for more detail.
640
+ use_cache (`bool`, *optional*):
641
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
642
+ (see `past_key_values`).
643
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
644
+ """
645
+ if 'padding_mask' in kwargs:
646
+ warnings.warn(
647
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
648
+ 'Please make sure use `attention_mask` instead.`'
649
+ )
650
+
651
+ residual = hidden_states
652
+
653
+ hidden_states = self.attention_norm(hidden_states)
654
+
655
+ # Self Attention
656
+ hidden_states, self_attn_weights, present_key_value = self.attention(
657
+ hidden_states=hidden_states,
658
+ attention_mask=attention_mask,
659
+ position_ids=position_ids,
660
+ past_key_value=past_key_value,
661
+ output_attentions=output_attentions,
662
+ use_cache=use_cache,
663
+ **kwargs,
664
+ )
665
+ hidden_states = residual + hidden_states
666
+
667
+ # Fully Connected
668
+ residual = hidden_states
669
+ hidden_states = self.ffn_norm(hidden_states)
670
+ hidden_states = self.feed_forward(hidden_states)
671
+ hidden_states = residual + hidden_states
672
+
673
+ outputs = (hidden_states,)
674
+
675
+ if output_attentions:
676
+ outputs += (self_attn_weights,)
677
+
678
+ if use_cache:
679
+ outputs += (present_key_value,)
680
+
681
+ return outputs
682
+
683
+
684
+ InternLM2_START_DOCSTRING = r"""
685
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
686
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
687
+ etc.)
688
+
689
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
690
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
691
+ and behavior.
692
+
693
+ Parameters:
694
+ config ([`InternLM2Config`]):
695
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
696
+ load the weights associated with the model, only the configuration. Check out the
697
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
698
+ """
699
+
700
+
701
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
702
+ @add_start_docstrings(
703
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
704
+ InternLM2_START_DOCSTRING,
705
+ )
706
+ class InternLM2PreTrainedModel(PreTrainedModel):
707
+ config_class = InternLM2Config
708
+ base_model_prefix = 'model'
709
+ supports_gradient_checkpointing = True
710
+ _no_split_modules = ['InternLM2DecoderLayer']
711
+ _skip_keys_device_placement = 'past_key_values'
712
+ _supports_flash_attn_2 = True
713
+
714
+ def _init_weights(self, module):
715
+ std = self.config.initializer_range
716
+ if isinstance(module, nn.Linear):
717
+ module.weight.data.normal_(mean=0.0, std=std)
718
+ if module.bias is not None:
719
+ module.bias.data.zero_()
720
+ elif isinstance(module, nn.Embedding):
721
+ module.weight.data.normal_(mean=0.0, std=std)
722
+ if module.padding_idx is not None:
723
+ module.weight.data[module.padding_idx].zero_()
724
+
725
+
726
+ InternLM2_INPUTS_DOCSTRING = r"""
727
+ Args:
728
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
729
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
730
+ it.
731
+
732
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
733
+ [`PreTrainedTokenizer.__call__`] for details.
734
+
735
+ [What are input IDs?](../glossary#input-ids)
736
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
737
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
738
+
739
+ - 1 for tokens that are **not masked**,
740
+ - 0 for tokens that are **masked**.
741
+
742
+ [What are attention masks?](../glossary#attention-mask)
743
+
744
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
745
+ [`PreTrainedTokenizer.__call__`] for details.
746
+
747
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
748
+ `past_key_values`).
749
+
750
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
751
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
752
+ information on the default strategy.
753
+
754
+ - 1 indicates the head is **not masked**,
755
+ - 0 indicates the head is **masked**.
756
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
757
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
758
+ config.n_positions - 1]`.
759
+
760
+ [What are position IDs?](../glossary#position-ids)
761
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
762
+ when `config.use_cache=True`):
763
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
764
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
765
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
766
+
767
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
768
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
769
+
770
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
771
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
772
+ of shape `(batch_size, sequence_length)`.
773
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
774
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
775
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
776
+ model's internal embedding lookup matrix.
777
+ use_cache (`bool`, *optional*):
778
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
779
+ `past_key_values`).
780
+ output_attentions (`bool`, *optional*):
781
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
782
+ tensors for more detail.
783
+ output_hidden_states (`bool`, *optional*):
784
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
785
+ more detail.
786
+ return_dict (`bool`, *optional*):
787
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
788
+ """
789
+
790
+
791
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
792
+ @add_start_docstrings(
793
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
794
+ InternLM2_START_DOCSTRING,
795
+ )
796
+ class InternLM2Model(InternLM2PreTrainedModel):
797
+ """
798
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
799
+
800
+ Args:
801
+ config: InternLM2Config
802
+ """
803
+
804
+ _auto_class = 'AutoModel'
805
+
806
+ def __init__(self, config: InternLM2Config):
807
+ super().__init__(config)
808
+ self.padding_idx = config.pad_token_id
809
+ self.vocab_size = config.vocab_size
810
+ self.config = config
811
+ if not has_flash_attn:
812
+ self.config.attn_implementation = 'eager'
813
+ print('Warning: Flash attention is not available, using eager attention instead.')
814
+
815
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
816
+
817
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
818
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
819
+
820
+ self.gradient_checkpointing = False
821
+ # Initialize weights and apply final processing
822
+ self.post_init()
823
+
824
+ def get_input_embeddings(self):
825
+ return self.tok_embeddings
826
+
827
+ def set_input_embeddings(self, value):
828
+ self.tok_embeddings = value
829
+
830
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
831
+ # create causal mask
832
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
833
+ combined_attention_mask = None
834
+ if input_shape[-1] > 1:
835
+ combined_attention_mask = _make_causal_mask(
836
+ input_shape,
837
+ inputs_embeds.dtype,
838
+ device=inputs_embeds.device,
839
+ past_key_values_length=past_key_values_length,
840
+ )
841
+
842
+ if attention_mask is not None:
843
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
844
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
845
+ inputs_embeds.device
846
+ )
847
+ combined_attention_mask = (
848
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
849
+ )
850
+
851
+ return combined_attention_mask
852
+
853
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
854
+ def forward(
855
+ self,
856
+ input_ids: torch.LongTensor = None,
857
+ attention_mask: Optional[torch.Tensor] = None,
858
+ position_ids: Optional[torch.LongTensor] = None,
859
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
860
+ inputs_embeds: Optional[torch.FloatTensor] = None,
861
+ use_cache: Optional[bool] = None,
862
+ output_attentions: Optional[bool] = None,
863
+ output_hidden_states: Optional[bool] = None,
864
+ return_dict: Optional[bool] = None,
865
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
866
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
867
+ output_hidden_states = (
868
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
869
+ )
870
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
871
+
872
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
873
+
874
+ if self.config.attn_implementation == 'flash_attention_2':
875
+ _import_flash_attn()
876
+
877
+ # retrieve input_ids and inputs_embeds
878
+ if input_ids is not None and inputs_embeds is not None:
879
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
880
+ elif input_ids is not None:
881
+ batch_size, seq_length = input_ids.shape[:2]
882
+ elif inputs_embeds is not None:
883
+ batch_size, seq_length = inputs_embeds.shape[:2]
884
+ else:
885
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
886
+
887
+ seq_length_with_past = seq_length
888
+ past_key_values_length = 0
889
+ if past_key_values is not None:
890
+ past_key_values_length = past_key_values[0][0].shape[2]
891
+ seq_length_with_past = seq_length_with_past + past_key_values_length
892
+
893
+ if position_ids is None:
894
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
895
+ position_ids = torch.arange(
896
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
897
+ )
898
+ position_ids = position_ids.unsqueeze(0)
899
+
900
+ if inputs_embeds is None:
901
+ inputs_embeds = self.tok_embeddings(input_ids)
902
+
903
+ if self.config.attn_implementation == 'flash_attention_2':
904
+ # 2d mask is passed through the layers
905
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
906
+ else:
907
+ if attention_mask is None:
908
+ attention_mask = torch.ones(
909
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
910
+ )
911
+ attention_mask = self._prepare_decoder_attention_mask(
912
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
913
+ )
914
+
915
+ # embed positions
916
+ hidden_states = inputs_embeds
917
+
918
+ if self.gradient_checkpointing and self.training:
919
+ if use_cache:
920
+ logger.warning_once(
921
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
922
+ )
923
+ use_cache = False
924
+
925
+ # decoder layers
926
+ all_hidden_states = () if output_hidden_states else None
927
+ all_self_attns = () if output_attentions else None
928
+ next_decoder_cache = () if use_cache else None
929
+
930
+ for idx, decoder_layer in enumerate(self.layers):
931
+ if output_hidden_states:
932
+ all_hidden_states += (hidden_states,)
933
+
934
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
935
+
936
+ if self.gradient_checkpointing and self.training:
937
+
938
+ def create_custom_forward(module):
939
+ def custom_forward(*inputs):
940
+ # None for past_key_value
941
+ return module(*inputs, output_attentions, None)
942
+
943
+ return custom_forward
944
+
945
+ layer_outputs = torch.utils.checkpoint.checkpoint(
946
+ create_custom_forward(decoder_layer),
947
+ hidden_states,
948
+ attention_mask,
949
+ position_ids,
950
+ None,
951
+ )
952
+ else:
953
+ layer_outputs = decoder_layer(
954
+ hidden_states,
955
+ attention_mask=attention_mask,
956
+ position_ids=position_ids,
957
+ past_key_value=past_key_value,
958
+ output_attentions=output_attentions,
959
+ use_cache=use_cache,
960
+ )
961
+
962
+ hidden_states = layer_outputs[0]
963
+
964
+ if use_cache:
965
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
966
+
967
+ if output_attentions:
968
+ all_self_attns += (layer_outputs[1],)
969
+
970
+ hidden_states = self.norm(hidden_states)
971
+
972
+ # add hidden states from the last decoder layer
973
+ if output_hidden_states:
974
+ all_hidden_states += (hidden_states,)
975
+
976
+ next_cache = next_decoder_cache if use_cache else None
977
+ if not return_dict:
978
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
979
+ return BaseModelOutputWithPast(
980
+ last_hidden_state=hidden_states,
981
+ past_key_values=next_cache,
982
+ hidden_states=all_hidden_states,
983
+ attentions=all_self_attns,
984
+ )
985
+
986
+
987
+ # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
988
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
989
+ _auto_class = 'AutoModelForCausalLM'
990
+
991
+ _tied_weights_keys = ['output.weight']
992
+
993
+ def __init__(self, config):
994
+ super().__init__(config)
995
+ self.model = InternLM2Model(config)
996
+ self.vocab_size = config.vocab_size
997
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
998
+
999
+ # Initialize weights and apply final processing
1000
+ self.post_init()
1001
+
1002
+ def get_input_embeddings(self):
1003
+ return self.model.tok_embeddings
1004
+
1005
+ def set_input_embeddings(self, value):
1006
+ self.model.tok_embeddings = value
1007
+
1008
+ def get_output_embeddings(self):
1009
+ return self.output
1010
+
1011
+ def set_output_embeddings(self, new_embeddings):
1012
+ self.output = new_embeddings
1013
+
1014
+ def set_decoder(self, decoder):
1015
+ self.model = decoder
1016
+
1017
+ def get_decoder(self):
1018
+ return self.model
1019
+
1020
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1021
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1022
+ def forward(
1023
+ self,
1024
+ input_ids: torch.LongTensor = None,
1025
+ attention_mask: Optional[torch.Tensor] = None,
1026
+ position_ids: Optional[torch.LongTensor] = None,
1027
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1028
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1029
+ labels: Optional[torch.LongTensor] = None,
1030
+ use_cache: Optional[bool] = None,
1031
+ output_attentions: Optional[bool] = None,
1032
+ output_hidden_states: Optional[bool] = None,
1033
+ return_dict: Optional[bool] = None,
1034
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1035
+ r"""
1036
+ Args:
1037
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1038
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1039
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1040
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1041
+
1042
+ Returns:
1043
+
1044
+ Example:
1045
+
1046
+ ```python
1047
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1048
+
1049
+ >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1050
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1051
+
1052
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1053
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1054
+
1055
+ >>> # Generate
1056
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1057
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1058
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1059
+ ```"""
1060
+
1061
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1062
+ output_hidden_states = (
1063
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1064
+ )
1065
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1066
+
1067
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1068
+ outputs = self.model(
1069
+ input_ids=input_ids,
1070
+ attention_mask=attention_mask,
1071
+ position_ids=position_ids,
1072
+ past_key_values=past_key_values,
1073
+ inputs_embeds=inputs_embeds,
1074
+ use_cache=use_cache,
1075
+ output_attentions=output_attentions,
1076
+ output_hidden_states=output_hidden_states,
1077
+ return_dict=return_dict,
1078
+ )
1079
+
1080
+ hidden_states = outputs[0]
1081
+ logits = self.output(hidden_states)
1082
+ logits = logits.float()
1083
+
1084
+ loss = None
1085
+ if labels is not None:
1086
+ # Shift so that tokens < n predict n
1087
+ shift_logits = logits[..., :-1, :].contiguous()
1088
+ shift_labels = labels[..., 1:].contiguous()
1089
+ # Flatten the tokens
1090
+ loss_fct = CrossEntropyLoss()
1091
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1092
+ shift_labels = shift_labels.view(-1)
1093
+ # Enable model parallelism
1094
+ shift_labels = shift_labels.to(shift_logits.device)
1095
+ loss = loss_fct(shift_logits, shift_labels)
1096
+
1097
+ if not return_dict:
1098
+ output = (logits,) + outputs[1:]
1099
+ return (loss,) + output if loss is not None else output
1100
+
1101
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1102
+ output = CausalLMOutputWithPast(
1103
+ loss=loss,
1104
+ logits=logits,
1105
+ past_key_values=outputs.past_key_values,
1106
+ hidden_states=outputs.hidden_states,
1107
+ attentions=outputs.attentions,
1108
+ )
1109
+ output['logits'] = output['logits'].to(device)
1110
+ return output
1111
+
1112
+ def prepare_inputs_for_generation(
1113
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1114
+ ):
1115
+ if past_key_values is not None:
1116
+ past_length = past_key_values[0][0].shape[2]
1117
+
1118
+ # Some generation methods already pass only the last input ID
1119
+ if input_ids.shape[1] > past_length:
1120
+ remove_prefix_length = past_length
1121
+ else:
1122
+ # Default to old behavior: keep only final ID
1123
+ remove_prefix_length = input_ids.shape[1] - 1
1124
+
1125
+ input_ids = input_ids[:, remove_prefix_length:]
1126
+
1127
+ position_ids = kwargs.get('position_ids', None)
1128
+ if attention_mask is not None and position_ids is None:
1129
+ # create position_ids on the fly for batch generation
1130
+ position_ids = attention_mask.long().cumsum(-1) - 1
1131
+ position_ids.masked_fill_(attention_mask == 0, 1)
1132
+ if past_key_values:
1133
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1134
+
1135
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1136
+ if inputs_embeds is not None and past_key_values is None:
1137
+ model_inputs = {'inputs_embeds': inputs_embeds}
1138
+ else:
1139
+ model_inputs = {'input_ids': input_ids}
1140
+
1141
+ model_inputs.update(
1142
+ {
1143
+ 'position_ids': position_ids,
1144
+ 'past_key_values': past_key_values,
1145
+ 'use_cache': kwargs.get('use_cache'),
1146
+ 'attention_mask': attention_mask,
1147
+ }
1148
+ )
1149
+ return model_inputs
1150
+
1151
+ @staticmethod
1152
+ def _reorder_cache(past_key_values, beam_idx):
1153
+ reordered_past = ()
1154
+ for layer_past in past_key_values:
1155
+ reordered_past += (
1156
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1157
+ )
1158
+ return reordered_past
1159
+
1160
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
1161
+ if tokenizer.add_bos_token:
1162
+ prompt = ''
1163
+ else:
1164
+ prompt = tokenizer.bos_token
1165
+ if meta_instruction:
1166
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1167
+ for record in history:
1168
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1169
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1170
+ return tokenizer([prompt], return_tensors='pt')
1171
+
1172
+ @torch.no_grad()
1173
+ def chat(
1174
+ self,
1175
+ tokenizer,
1176
+ query: str,
1177
+ history: List[Tuple[str, str]] = [],
1178
+ streamer: Optional[BaseStreamer] = None,
1179
+ max_new_tokens: int = 1024,
1180
+ do_sample: bool = True,
1181
+ temperature: float = 0.8,
1182
+ top_p: float = 0.8,
1183
+ meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
1184
+ '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
1185
+ '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
1186
+ **kwargs,
1187
+ ):
1188
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1189
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1190
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1191
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
1192
+ outputs = self.generate(
1193
+ **inputs,
1194
+ streamer=streamer,
1195
+ max_new_tokens=max_new_tokens,
1196
+ do_sample=do_sample,
1197
+ temperature=temperature,
1198
+ top_p=top_p,
1199
+ eos_token_id=eos_token_id,
1200
+ **kwargs,
1201
+ )
1202
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]) :]
1203
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1204
+ response = response.split('<|im_end|>')[0]
1205
+ history = history + [(query, response)]
1206
+ return response, history
1207
+
1208
+ @torch.no_grad()
1209
+ def stream_chat(
1210
+ self,
1211
+ tokenizer,
1212
+ query: str,
1213
+ history: List[Tuple[str, str]] = [],
1214
+ max_new_tokens: int = 1024,
1215
+ do_sample: bool = True,
1216
+ temperature: float = 0.8,
1217
+ top_p: float = 0.8,
1218
+ **kwargs,
1219
+ ):
1220
+ """
1221
+ Return a generator in format: (response, history)
1222
+ Eg.
1223
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1224
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1225
+ """
1226
+ if BaseStreamer is None:
1227
+ raise ModuleNotFoundError(
1228
+ 'The version of `transformers` is too low. Please make sure '
1229
+ 'that you have installed `transformers>=4.28.0`.'
1230
+ )
1231
+
1232
+ response_queue = queue.Queue(maxsize=20)
1233
+
1234
+ class ChatStreamer(BaseStreamer):
1235
+ def __init__(self, tokenizer) -> None:
1236
+ super().__init__()
1237
+ self.tokenizer = tokenizer
1238
+ self.queue = response_queue
1239
+ self.query = query
1240
+ self.history = history
1241
+ self.response = ''
1242
+ self.cache = []
1243
+ self.received_inputs = False
1244
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1245
+
1246
+ def put(self, value):
1247
+ if len(value.shape) > 1 and value.shape[0] > 1:
1248
+ raise ValueError('ChatStreamer only supports batch size 1')
1249
+ elif len(value.shape) > 1:
1250
+ value = value[0]
1251
+
1252
+ if not self.received_inputs:
1253
+ # The first received value is input_ids, ignore here
1254
+ self.received_inputs = True
1255
+ return
1256
+
1257
+ self.cache.extend(value.tolist())
1258
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1259
+ if token.strip() != '<|im_end|>':
1260
+ self.response = self.response + token
1261
+ history = self.history + [(self.query, self.response)]
1262
+ self.queue.put((self.response, history))
1263
+ self.cache = []
1264
+ else:
1265
+ self.end()
1266
+
1267
+ def end(self):
1268
+ self.queue.put(None)
1269
+
1270
+ def stream_producer():
1271
+ return self.chat(
1272
+ tokenizer=tokenizer,
1273
+ query=query,
1274
+ streamer=ChatStreamer(tokenizer=tokenizer),
1275
+ history=history,
1276
+ max_new_tokens=max_new_tokens,
1277
+ do_sample=do_sample,
1278
+ temperature=temperature,
1279
+ top_p=top_p,
1280
+ **kwargs,
1281
+ )
1282
+
1283
+ def consumer():
1284
+ producer = threading.Thread(target=stream_producer)
1285
+ producer.start()
1286
+ while True:
1287
+ res = response_queue.get()
1288
+ if res is None:
1289
+ return
1290
+ yield res
1291
+
1292
+ return consumer()
1293
+
1294
+
1295
+ # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1296
+ @add_start_docstrings(
1297
+ """
1298
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1299
+
1300
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
1301
+ as other causal models (e.g. GPT-2) do.
1302
+
1303
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1304
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1305
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1306
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1307
+ each row of the batch).
1308
+ """,
1309
+ InternLM2_START_DOCSTRING,
1310
+ )
1311
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1312
+ def __init__(self, config):
1313
+ super().__init__(config)
1314
+ self.num_labels = config.num_labels
1315
+ self.model = InternLM2Model(config)
1316
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1317
+
1318
+ # Initialize weights and apply final processing
1319
+ self.post_init()
1320
+
1321
+ def get_input_embeddings(self):
1322
+ return self.model.tok_embeddings
1323
+
1324
+ def set_input_embeddings(self, value):
1325
+ self.model.tok_embeddings = value
1326
+
1327
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1328
+ def forward(
1329
+ self,
1330
+ input_ids: torch.LongTensor = None,
1331
+ attention_mask: Optional[torch.Tensor] = None,
1332
+ position_ids: Optional[torch.LongTensor] = None,
1333
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1334
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1335
+ labels: Optional[torch.LongTensor] = None,
1336
+ use_cache: Optional[bool] = None,
1337
+ output_attentions: Optional[bool] = None,
1338
+ output_hidden_states: Optional[bool] = None,
1339
+ return_dict: Optional[bool] = None,
1340
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1341
+ r"""
1342
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1343
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1344
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1345
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1346
+ """
1347
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1348
+
1349
+ transformer_outputs = self.model(
1350
+ input_ids,
1351
+ attention_mask=attention_mask,
1352
+ position_ids=position_ids,
1353
+ past_key_values=past_key_values,
1354
+ inputs_embeds=inputs_embeds,
1355
+ use_cache=use_cache,
1356
+ output_attentions=output_attentions,
1357
+ output_hidden_states=output_hidden_states,
1358
+ return_dict=return_dict,
1359
+ )
1360
+ hidden_states = transformer_outputs[0]
1361
+ logits = self.score(hidden_states)
1362
+
1363
+ if input_ids is not None:
1364
+ batch_size = input_ids.shape[0]
1365
+ else:
1366
+ batch_size = inputs_embeds.shape[0]
1367
+
1368
+ if self.config.pad_token_id is None and batch_size != 1:
1369
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1370
+ if self.config.pad_token_id is None:
1371
+ sequence_lengths = -1
1372
+ else:
1373
+ if input_ids is not None:
1374
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1375
+ logits.device
1376
+ )
1377
+ else:
1378
+ sequence_lengths = -1
1379
+
1380
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1381
+
1382
+ loss = None
1383
+ if labels is not None:
1384
+ labels = labels.to(logits.device)
1385
+ if self.config.problem_type is None:
1386
+ if self.num_labels == 1:
1387
+ self.config.problem_type = 'regression'
1388
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1389
+ self.config.problem_type = 'single_label_classification'
1390
+ else:
1391
+ self.config.problem_type = 'multi_label_classification'
1392
+
1393
+ if self.config.problem_type == 'regression':
1394
+ loss_fct = MSELoss()
1395
+ if self.num_labels == 1:
1396
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1397
+ else:
1398
+ loss = loss_fct(pooled_logits, labels)
1399
+ elif self.config.problem_type == 'single_label_classification':
1400
+ loss_fct = CrossEntropyLoss()
1401
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1402
+ elif self.config.problem_type == 'multi_label_classification':
1403
+ loss_fct = BCEWithLogitsLoss()
1404
+ loss = loss_fct(pooled_logits, labels)
1405
+ if not return_dict:
1406
+ output = (pooled_logits,) + transformer_outputs[1:]
1407
+ return ((loss,) + output) if loss is not None else output
1408
+
1409
+ return SequenceClassifierOutputWithPast(
1410
+ loss=loss,
1411
+ logits=pooled_logits,
1412
+ past_key_values=transformer_outputs.past_key_values,
1413
+ hidden_states=transformer_outputs.hidden_states,
1414
+ attentions=transformer_outputs.attentions,
1415
+ )
OpenGVLab/InternVL2-2B/modeling_internvl_chat.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import warnings
8
+ from typing import List, Optional, Tuple, Union
9
+
10
+ import torch.utils.checkpoint
11
+ import transformers
12
+ from torch import nn
13
+ from torch.nn import CrossEntropyLoss
14
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
15
+ LlamaTokenizer)
16
+ from transformers.modeling_outputs import CausalLMOutputWithPast
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import ModelOutput, logging
19
+
20
+ from .configuration_internvl_chat import InternVLChatConfig
21
+ from .conversation import get_conv_template
22
+ from .modeling_intern_vit import InternVisionModel, has_flash_attn
23
+ from .modeling_internlm2 import InternLM2ForCausalLM
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+
28
+ def version_cmp(v1, v2, op='eq'):
29
+ import operator
30
+
31
+ from packaging import version
32
+ op_func = getattr(operator, op)
33
+ return op_func(version.parse(v1), version.parse(v2))
34
+
35
+
36
+ class InternVLChatModel(PreTrainedModel):
37
+ config_class = InternVLChatConfig
38
+ main_input_name = 'pixel_values'
39
+ base_model_prefix = 'language_model'
40
+ _supports_flash_attn_2 = True
41
+ _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer']
42
+
43
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
44
+ super().__init__(config)
45
+
46
+ assert version_cmp(transformers.__version__, '4.37.0', 'ge')
47
+ image_size = config.force_image_size or config.vision_config.image_size
48
+ patch_size = config.vision_config.patch_size
49
+ self.patch_size = patch_size
50
+ self.select_layer = config.select_layer
51
+ self.template = config.template
52
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
53
+ self.downsample_ratio = config.downsample_ratio
54
+ self.ps_version = config.ps_version
55
+ use_flash_attn = use_flash_attn if has_flash_attn else False
56
+ config.vision_config.use_flash_attn = True if use_flash_attn else False
57
+ config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
58
+
59
+ logger.info(f'num_image_token: {self.num_image_token}')
60
+ logger.info(f'ps_version: {self.ps_version}')
61
+ if vision_model is not None:
62
+ self.vision_model = vision_model
63
+ else:
64
+ self.vision_model = InternVisionModel(config.vision_config)
65
+ if language_model is not None:
66
+ self.language_model = language_model
67
+ else:
68
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
69
+ self.language_model = LlamaForCausalLM(config.llm_config)
70
+ elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
71
+ self.language_model = InternLM2ForCausalLM(config.llm_config)
72
+ else:
73
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
74
+
75
+ vit_hidden_size = config.vision_config.hidden_size
76
+ llm_hidden_size = config.llm_config.hidden_size
77
+
78
+ self.mlp1 = nn.Sequential(
79
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
80
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
81
+ nn.GELU(),
82
+ nn.Linear(llm_hidden_size, llm_hidden_size)
83
+ )
84
+
85
+ self.img_context_token_id = None
86
+ self.conv_template = get_conv_template(self.template)
87
+ self.system_message = self.conv_template.system_message
88
+
89
+ def forward(
90
+ self,
91
+ pixel_values: torch.FloatTensor,
92
+ input_ids: torch.LongTensor = None,
93
+ attention_mask: Optional[torch.Tensor] = None,
94
+ position_ids: Optional[torch.LongTensor] = None,
95
+ image_flags: Optional[torch.LongTensor] = None,
96
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
97
+ labels: Optional[torch.LongTensor] = None,
98
+ use_cache: Optional[bool] = None,
99
+ output_attentions: Optional[bool] = None,
100
+ output_hidden_states: Optional[bool] = None,
101
+ return_dict: Optional[bool] = None,
102
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
103
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
104
+
105
+ image_flags = image_flags.squeeze(-1)
106
+ input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
107
+
108
+ vit_embeds = self.extract_feature(pixel_values)
109
+ vit_embeds = vit_embeds[image_flags == 1]
110
+ vit_batch_size = pixel_values.shape[0]
111
+
112
+ B, N, C = input_embeds.shape
113
+ input_embeds = input_embeds.reshape(B * N, C)
114
+
115
+ if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
116
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
117
+
118
+ input_ids = input_ids.reshape(B * N)
119
+ selected = (input_ids == self.img_context_token_id)
120
+ try:
121
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
122
+ except Exception as e:
123
+ vit_embeds = vit_embeds.reshape(-1, C)
124
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
125
+ f'vit_embeds.shape={vit_embeds.shape}')
126
+ n_token = selected.sum()
127
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
128
+
129
+ input_embeds = input_embeds.reshape(B, N, C)
130
+
131
+ outputs = self.language_model(
132
+ inputs_embeds=input_embeds,
133
+ attention_mask=attention_mask,
134
+ position_ids=position_ids,
135
+ past_key_values=past_key_values,
136
+ use_cache=use_cache,
137
+ output_attentions=output_attentions,
138
+ output_hidden_states=output_hidden_states,
139
+ return_dict=return_dict,
140
+ )
141
+ logits = outputs.logits
142
+
143
+ loss = None
144
+ if labels is not None:
145
+ # Shift so that tokens < n predict n
146
+ shift_logits = logits[..., :-1, :].contiguous()
147
+ shift_labels = labels[..., 1:].contiguous()
148
+ # Flatten the tokens
149
+ loss_fct = CrossEntropyLoss()
150
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
151
+ shift_labels = shift_labels.view(-1)
152
+ # Enable model parallelism
153
+ shift_labels = shift_labels.to(shift_logits.device)
154
+ loss = loss_fct(shift_logits, shift_labels)
155
+
156
+ if not return_dict:
157
+ output = (logits,) + outputs[1:]
158
+ return (loss,) + output if loss is not None else output
159
+
160
+ return CausalLMOutputWithPast(
161
+ loss=loss,
162
+ logits=logits,
163
+ past_key_values=outputs.past_key_values,
164
+ hidden_states=outputs.hidden_states,
165
+ attentions=outputs.attentions,
166
+ )
167
+
168
+ def pixel_shuffle(self, x, scale_factor=0.5):
169
+ n, w, h, c = x.size()
170
+ # N, W, H, C --> N, W, H * scale, C // scale
171
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
172
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
173
+ x = x.permute(0, 2, 1, 3).contiguous()
174
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
175
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
176
+ int(c / (scale_factor * scale_factor)))
177
+ if self.ps_version == 'v1':
178
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
179
+ 'which results in a transposed image.')
180
+ else:
181
+ x = x.permute(0, 2, 1, 3).contiguous()
182
+ return x
183
+
184
+ def extract_feature(self, pixel_values):
185
+ if self.select_layer == -1:
186
+ vit_embeds = self.vision_model(
187
+ pixel_values=pixel_values,
188
+ output_hidden_states=False,
189
+ return_dict=True).last_hidden_state
190
+ else:
191
+ vit_embeds = self.vision_model(
192
+ pixel_values=pixel_values,
193
+ output_hidden_states=True,
194
+ return_dict=True).hidden_states[self.select_layer]
195
+ vit_embeds = vit_embeds[:, 1:, :]
196
+
197
+ h = w = int(vit_embeds.shape[1] ** 0.5)
198
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
199
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
200
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
201
+ vit_embeds = self.mlp1(vit_embeds)
202
+ return vit_embeds
203
+
204
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
205
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
206
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
207
+ if history is not None or return_history:
208
+ print('Now multi-turn chat is not supported in batch_chat.')
209
+ raise NotImplementedError
210
+
211
+ if image_counts is not None:
212
+ num_patches_list = image_counts
213
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
214
+
215
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
216
+ self.img_context_token_id = img_context_token_id
217
+
218
+ if verbose and pixel_values is not None:
219
+ image_bs = pixel_values.shape[0]
220
+ print(f'dynamic ViT batch size: {image_bs}')
221
+
222
+ queries = []
223
+ for idx, num_patches in enumerate(num_patches_list):
224
+ question = questions[idx]
225
+ if pixel_values is not None and '<image>' not in question:
226
+ question = '<image>\n' + question
227
+ template = get_conv_template(self.template)
228
+ template.system_message = self.system_message
229
+ template.append_message(template.roles[0], question)
230
+ template.append_message(template.roles[1], None)
231
+ query = template.get_prompt()
232
+
233
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
234
+ query = query.replace('<image>', image_tokens, 1)
235
+ queries.append(query)
236
+
237
+ tokenizer.padding_side = 'left'
238
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
239
+ input_ids = model_inputs['input_ids'].to(self.device)
240
+ attention_mask = model_inputs['attention_mask'].to(self.device)
241
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
242
+ generation_config['eos_token_id'] = eos_token_id
243
+ generation_output = self.generate(
244
+ pixel_values=pixel_values,
245
+ input_ids=input_ids,
246
+ attention_mask=attention_mask,
247
+ **generation_config
248
+ )
249
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
250
+ responses = [response.split(template.sep.strip())[0].strip() for response in responses]
251
+ return responses
252
+
253
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
254
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
255
+ verbose=False):
256
+
257
+ if history is None and pixel_values is not None and '<image>' not in question:
258
+ question = '<image>\n' + question
259
+
260
+ if num_patches_list is None:
261
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
262
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
263
+
264
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
265
+ self.img_context_token_id = img_context_token_id
266
+
267
+ template = get_conv_template(self.template)
268
+ template.system_message = self.system_message
269
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
270
+
271
+ history = [] if history is None else history
272
+ for (old_question, old_answer) in history:
273
+ template.append_message(template.roles[0], old_question)
274
+ template.append_message(template.roles[1], old_answer)
275
+ template.append_message(template.roles[0], question)
276
+ template.append_message(template.roles[1], None)
277
+ query = template.get_prompt()
278
+
279
+ if verbose and pixel_values is not None:
280
+ image_bs = pixel_values.shape[0]
281
+ print(f'dynamic ViT batch size: {image_bs}')
282
+
283
+ for num_patches in num_patches_list:
284
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
285
+ query = query.replace('<image>', image_tokens, 1)
286
+
287
+ model_inputs = tokenizer(query, return_tensors='pt')
288
+ input_ids = model_inputs['input_ids'].to(self.device)
289
+ attention_mask = model_inputs['attention_mask'].to(self.device)
290
+ generation_config['eos_token_id'] = eos_token_id
291
+ generation_output = self.generate(
292
+ pixel_values=pixel_values,
293
+ input_ids=input_ids,
294
+ attention_mask=attention_mask,
295
+ **generation_config
296
+ )
297
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
298
+ response = response.split(template.sep.strip())[0].strip()
299
+ history.append((question, response))
300
+ if return_history:
301
+ return response, history
302
+ else:
303
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
304
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
305
+ if verbose:
306
+ print(query_to_print, response)
307
+ return response
308
+
309
+ @torch.no_grad()
310
+ def generate(
311
+ self,
312
+ pixel_values: Optional[torch.FloatTensor] = None,
313
+ input_ids: Optional[torch.FloatTensor] = None,
314
+ attention_mask: Optional[torch.LongTensor] = None,
315
+ visual_features: Optional[torch.FloatTensor] = None,
316
+ generation_config: Optional[GenerationConfig] = None,
317
+ output_hidden_states: Optional[bool] = None,
318
+ **generate_kwargs,
319
+ ) -> torch.LongTensor:
320
+
321
+ assert self.img_context_token_id is not None
322
+ if pixel_values is not None:
323
+ if visual_features is not None:
324
+ vit_embeds = visual_features
325
+ else:
326
+ vit_embeds = self.extract_feature(pixel_values)
327
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
328
+ B, N, C = input_embeds.shape
329
+ input_embeds = input_embeds.reshape(B * N, C)
330
+
331
+ input_ids = input_ids.reshape(B * N)
332
+ selected = (input_ids == self.img_context_token_id)
333
+ assert selected.sum() != 0
334
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
335
+
336
+ input_embeds = input_embeds.reshape(B, N, C)
337
+ else:
338
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
339
+
340
+ outputs = self.language_model.generate(
341
+ inputs_embeds=input_embeds,
342
+ attention_mask=attention_mask,
343
+ generation_config=generation_config,
344
+ output_hidden_states=output_hidden_states,
345
+ use_cache=True,
346
+ **generate_kwargs,
347
+ )
348
+
349
+ return outputs
OpenGVLab/InternVL2-2B/preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 448,
3
+ "do_center_crop": true,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "CLIPFeatureExtractor",
7
+ "image_mean": [
8
+ 0.485,
9
+ 0.456,
10
+ 0.406
11
+ ],
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 3,
18
+ "size": 448
19
+ }
OpenGVLab/InternVL2-2B/special_tokens_map.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|action_start|>",
6
+ "<|action_end|>",
7
+ "<|interpreter|>",
8
+ "<|plugin|>",
9
+ "<img>",
10
+ "</img>",
11
+ "<IMG_CONTEXT>",
12
+ "<quad>",
13
+ "</quad>",
14
+ "<ref>",
15
+ "</ref>",
16
+ "<box>",
17
+ "</box>"
18
+ ],
19
+ "bos_token": {
20
+ "content": "<s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "eos_token": {
27
+ "content": "</s>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ },
33
+ "pad_token": {
34
+ "content": "</s>",
35
+ "lstrip": false,
36
+ "normalized": false,
37
+ "rstrip": false,
38
+ "single_word": false
39
+ },
40
+ "unk_token": {
41
+ "content": "<unk>",
42
+ "lstrip": false,
43
+ "normalized": false,
44
+ "rstrip": false,
45
+ "single_word": false
46
+ }
47
+ }
OpenGVLab/InternVL2-2B/tokenization_internlm2.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """Tokenization classes for InternLM."""
18
+ import os
19
+ from shutil import copyfile
20
+ from typing import Any, Dict, List, Optional, Tuple
21
+
22
+ import sentencepiece as spm
23
+ from transformers.tokenization_utils import PreTrainedTokenizer
24
+ from transformers.utils import logging
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
29
+
30
+ PRETRAINED_VOCAB_FILES_MAP = {}
31
+
32
+
33
+ # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
34
+ class InternLM2Tokenizer(PreTrainedTokenizer):
35
+ """
36
+ Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
37
+
38
+ Args:
39
+ vocab_file (`str`):
40
+ Path to the vocabulary file.
41
+ """
42
+
43
+ vocab_files_names = VOCAB_FILES_NAMES
44
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
45
+ model_input_names = ['input_ids', 'attention_mask']
46
+ _auto_class = 'AutoTokenizer'
47
+
48
+ def __init__(
49
+ self,
50
+ vocab_file,
51
+ unk_token='<unk>',
52
+ bos_token='<s>',
53
+ eos_token='</s>',
54
+ pad_token='</s>',
55
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
56
+ add_bos_token=True,
57
+ add_eos_token=False,
58
+ decode_with_prefix_space=False,
59
+ clean_up_tokenization_spaces=False,
60
+ **kwargs,
61
+ ):
62
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
63
+ self.vocab_file = vocab_file
64
+ self.add_bos_token = add_bos_token
65
+ self.add_eos_token = add_eos_token
66
+ self.decode_with_prefix_space = decode_with_prefix_space
67
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
68
+ self.sp_model.Load(vocab_file)
69
+ self._no_prefix_space_tokens = None
70
+ super().__init__(
71
+ bos_token=bos_token,
72
+ eos_token=eos_token,
73
+ unk_token=unk_token,
74
+ pad_token=pad_token,
75
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
76
+ **kwargs,
77
+ )
78
+
79
+ @property
80
+ def no_prefix_space_tokens(self):
81
+ if self._no_prefix_space_tokens is None:
82
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
83
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith('▁')}
84
+ return self._no_prefix_space_tokens
85
+
86
+ @property
87
+ def vocab_size(self):
88
+ """Returns vocab size"""
89
+ return self.sp_model.get_piece_size()
90
+
91
+ @property
92
+ def bos_token_id(self) -> Optional[int]:
93
+ return self.sp_model.bos_id()
94
+
95
+ @property
96
+ def eos_token_id(self) -> Optional[int]:
97
+ return self.sp_model.eos_id()
98
+
99
+ def get_vocab(self):
100
+ """Returns vocab as a dict"""
101
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
102
+ vocab.update(self.added_tokens_encoder)
103
+ return vocab
104
+
105
+ def _tokenize(self, text):
106
+ """Returns a tokenized string."""
107
+ return self.sp_model.encode(text, out_type=str)
108
+
109
+ def _convert_token_to_id(self, token):
110
+ """Converts a token (str) in an id using the vocab."""
111
+ return self.sp_model.piece_to_id(token)
112
+
113
+ def _convert_id_to_token(self, index):
114
+ """Converts an index (integer) in a token (str) using the vocab."""
115
+ token = self.sp_model.IdToPiece(index)
116
+ return token
117
+
118
+ def _maybe_add_prefix_space(self, tokens, decoded):
119
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
120
+ return ' ' + decoded
121
+ else:
122
+ return decoded
123
+
124
+ def convert_tokens_to_string(self, tokens):
125
+ """Converts a sequence of tokens (string) in a single string."""
126
+ current_sub_tokens = []
127
+ out_string = ''
128
+ prev_is_special = False
129
+ for token in tokens:
130
+ # make sure that special tokens are not decoded using sentencepiece model
131
+ if token in self.all_special_tokens:
132
+ if not prev_is_special:
133
+ out_string += ' '
134
+ out_string += self.sp_model.decode(current_sub_tokens) + token
135
+ prev_is_special = True
136
+ current_sub_tokens = []
137
+ else:
138
+ current_sub_tokens.append(token)
139
+ prev_is_special = False
140
+ out_string += self.sp_model.decode(current_sub_tokens)
141
+ out_string = self.clean_up_tokenization(out_string)
142
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
143
+ return out_string[1:]
144
+
145
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
146
+ """
147
+ Save the vocabulary and special tokens file to a directory.
148
+
149
+ Args:
150
+ save_directory (`str`):
151
+ The directory in which to save the vocabulary.
152
+
153
+ Returns:
154
+ `Tuple(str)`: Paths to the files saved.
155
+ """
156
+ if not os.path.isdir(save_directory):
157
+ logger.error(f'Vocabulary path ({save_directory}) should be a directory')
158
+ return
159
+ out_vocab_file = os.path.join(
160
+ save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
161
+ )
162
+
163
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
164
+ copyfile(self.vocab_file, out_vocab_file)
165
+ elif not os.path.isfile(self.vocab_file):
166
+ with open(out_vocab_file, 'wb') as fi:
167
+ content_spiece_model = self.sp_model.serialized_model_proto()
168
+ fi.write(content_spiece_model)
169
+
170
+ return (out_vocab_file,)
171
+
172
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
173
+ if self.add_bos_token:
174
+ bos_token_ids = [self.bos_token_id]
175
+ else:
176
+ bos_token_ids = []
177
+
178
+ output = bos_token_ids + token_ids_0
179
+
180
+ if token_ids_1 is not None:
181
+ output = output + token_ids_1
182
+
183
+ if self.add_eos_token:
184
+ output = output + [self.eos_token_id]
185
+
186
+ return output
187
+
188
+ def get_special_tokens_mask(
189
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
190
+ ) -> List[int]:
191
+ """
192
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
193
+ special tokens using the tokenizer `prepare_for_model` method.
194
+
195
+ Args:
196
+ token_ids_0 (`List[int]`):
197
+ List of IDs.
198
+ token_ids_1 (`List[int]`, *optional*):
199
+ Optional second list of IDs for sequence pairs.
200
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
201
+ Whether or not the token list is already formatted with special tokens for the model.
202
+
203
+ Returns:
204
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
205
+ """
206
+ if already_has_special_tokens:
207
+ return super().get_special_tokens_mask(
208
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
209
+ )
210
+
211
+ if token_ids_1 is None:
212
+ return [1] + ([0] * len(token_ids_0)) + [1]
213
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
214
+
215
+ def create_token_type_ids_from_sequences(
216
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
217
+ ) -> List[int]:
218
+ """
219
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
220
+ use of token type ids, therefore a list of zeros is returned.
221
+
222
+ Args:
223
+ token_ids_0 (`List[int]`):
224
+ List of IDs.
225
+ token_ids_1 (`List[int]`, *optional*):
226
+ Optional second list of IDs for sequence pairs.
227
+
228
+ Returns:
229
+ `List[int]`: List of zeros.
230
+ """
231
+ eos = [self.eos_token_id]
232
+
233
+ if token_ids_1 is None:
234
+ return len(token_ids_0 + eos) * [0]
235
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
OpenGVLab/InternVL2-2B/tokenization_internlm2_fast.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """Tokenization Fast class for InternLM."""
18
+ import os
19
+ from shutil import copyfile
20
+ from typing import Any, Dict, Optional, Tuple
21
+
22
+ from tokenizers import Tokenizer, decoders, normalizers, processors
23
+ from tokenizers.models import BPE
24
+ from transformers.convert_slow_tokenizer import (SLOW_TO_FAST_CONVERTERS,
25
+ SentencePieceExtractor,
26
+ SpmConverter)
27
+ from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
28
+ from transformers.utils import logging
29
+
30
+ from .tokenization_internlm2 import InternLM2Tokenizer
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
35
+
36
+
37
+ # Modified from transformers.convert_slow_tokenizer.LlamaConverter
38
+ class InternLM2Converter(SpmConverter):
39
+ handle_byte_fallback = True
40
+
41
+ def vocab(self, proto):
42
+ vocab = [
43
+ ('<unk>', 0.0),
44
+ ('<s>', 0.0),
45
+ ('</s>', 0.0),
46
+ ]
47
+ vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
48
+ return vocab
49
+
50
+ def unk_id(self, proto):
51
+ unk_id = 0
52
+ return unk_id
53
+
54
+ def decoder(self, replacement, add_prefix_space):
55
+ return decoders.Sequence(
56
+ [
57
+ decoders.Replace('▁', ' '),
58
+ decoders.ByteFallback(),
59
+ decoders.Fuse(),
60
+ decoders.Strip(content=' ', left=1),
61
+ ]
62
+ )
63
+
64
+ def tokenizer(self, proto):
65
+ model_type = proto.trainer_spec.model_type
66
+ vocab_scores = self.vocab(proto)
67
+ # special tokens
68
+ added_tokens = self.original_tokenizer.added_tokens_decoder
69
+ for i in range(len(vocab_scores)):
70
+ piece, score = vocab_scores[i]
71
+ if i in added_tokens:
72
+ vocab_scores[i] = (added_tokens[i].content, score)
73
+ if model_type == 1:
74
+ raise RuntimeError('InternLM2 is supposed to be a BPE model!')
75
+
76
+ elif model_type == 2:
77
+ _, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
78
+ bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
79
+ tokenizer = Tokenizer(
80
+ BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
81
+ )
82
+ tokenizer.add_special_tokens(
83
+ [ added_token for index, added_token in added_tokens.items()]
84
+ )
85
+ else:
86
+ raise Exception(
87
+ "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
88
+ )
89
+
90
+ return tokenizer
91
+
92
+ def normalizer(self, proto):
93
+ normalizers_list = []
94
+ if proto.normalizer_spec.add_dummy_prefix:
95
+ normalizers_list.append(normalizers.Prepend(prepend='▁'))
96
+ normalizers_list.append(normalizers.Replace(pattern=' ', content='▁'))
97
+ return normalizers.Sequence(normalizers_list)
98
+
99
+ def pre_tokenizer(self, replacement, add_prefix_space):
100
+ return None
101
+
102
+
103
+ SLOW_TO_FAST_CONVERTERS['InternLM2Tokenizer'] = InternLM2Converter
104
+
105
+
106
+ # Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
107
+ class InternLM2TokenizerFast(PreTrainedTokenizerFast):
108
+ vocab_files_names = VOCAB_FILES_NAMES
109
+ slow_tokenizer_class = InternLM2Tokenizer
110
+ padding_side = 'left'
111
+ model_input_names = ['input_ids', 'attention_mask']
112
+ _auto_class = 'AutoTokenizer'
113
+
114
+ def __init__(
115
+ self,
116
+ vocab_file,
117
+ unk_token='<unk>',
118
+ bos_token='<s>',
119
+ eos_token='</s>',
120
+ pad_token='</s>',
121
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
122
+ add_bos_token=True,
123
+ add_eos_token=False,
124
+ decode_with_prefix_space=False,
125
+ clean_up_tokenization_spaces=False,
126
+ **kwargs,
127
+ ):
128
+ super().__init__(
129
+ vocab_file=vocab_file,
130
+ unk_token=unk_token,
131
+ bos_token=bos_token,
132
+ eos_token=eos_token,
133
+ pad_token=pad_token,
134
+ sp_model_kwargs=sp_model_kwargs,
135
+ add_bos_token=add_bos_token,
136
+ add_eos_token=add_eos_token,
137
+ decode_with_prefix_space=decode_with_prefix_space,
138
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
139
+ **kwargs,
140
+ )
141
+ self._add_bos_token = add_bos_token
142
+ self._add_eos_token = add_eos_token
143
+ self.update_post_processor()
144
+ self.vocab_file = vocab_file
145
+
146
+ @property
147
+ def can_save_slow_tokenizer(self) -> bool:
148
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
149
+
150
+ def update_post_processor(self):
151
+ """
152
+ Updates the underlying post processor with the current `bos_token` and `eos_token`.
153
+ """
154
+ bos = self.bos_token
155
+ bos_token_id = self.bos_token_id
156
+ if bos is None and self.add_bos_token:
157
+ raise ValueError('add_bos_token = True but bos_token = None')
158
+
159
+ eos = self.eos_token
160
+ eos_token_id = self.eos_token_id
161
+ if eos is None and self.add_eos_token:
162
+ raise ValueError('add_eos_token = True but eos_token = None')
163
+
164
+ single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
165
+ pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
166
+
167
+ special_tokens = []
168
+ if self.add_bos_token:
169
+ special_tokens.append((bos, bos_token_id))
170
+ if self.add_eos_token:
171
+ special_tokens.append((eos, eos_token_id))
172
+ self._tokenizer.post_processor = processors.TemplateProcessing(
173
+ single=single, pair=pair, special_tokens=special_tokens
174
+ )
175
+
176
+ @property
177
+ def add_eos_token(self):
178
+ return self._add_eos_token
179
+
180
+ @property
181
+ def add_bos_token(self):
182
+ return self._add_bos_token
183
+
184
+ @add_eos_token.setter
185
+ def add_eos_token(self, value):
186
+ self._add_eos_token = value
187
+ self.update_post_processor()
188
+
189
+ @add_bos_token.setter
190
+ def add_bos_token(self, value):
191
+ self._add_bos_token = value
192
+ self.update_post_processor()
193
+
194
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
195
+ if not self.can_save_slow_tokenizer:
196
+ raise ValueError(
197
+ 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
198
+ 'tokenizer.'
199
+ )
200
+
201
+ if not os.path.isdir(save_directory):
202
+ logger.error(f'Vocabulary path ({save_directory}) should be a directory')
203
+ return
204
+ out_vocab_file = os.path.join(
205
+ save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
206
+ )
207
+
208
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
209
+ copyfile(self.vocab_file, out_vocab_file)
210
+
211
+ return (out_vocab_file,)
OpenGVLab/InternVL2-2B/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
3
+ size 1477754
OpenGVLab/InternVL2-2B/tokenizer_config.json ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "92538": {
28
+ "content": "<|plugin|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "92539": {
36
+ "content": "<|interpreter|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "92540": {
44
+ "content": "<|action_end|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "92541": {
52
+ "content": "<|action_start|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "92542": {
60
+ "content": "<|im_end|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "92543": {
68
+ "content": "<|im_start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "92544": {
76
+ "content": "<img>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "92545": {
84
+ "content": "</img>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "92546": {
92
+ "content": "<IMG_CONTEXT>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "92547": {
100
+ "content": "<quad>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "92548": {
108
+ "content": "</quad>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "92549": {
116
+ "content": "<ref>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "92550": {
124
+ "content": "</ref>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "92551": {
132
+ "content": "<box>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "92552": {
140
+ "content": "</box>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ }
147
+ },
148
+ "additional_special_tokens": [
149
+ "<|im_start|>",
150
+ "<|im_end|>",
151
+ "<|action_start|>",
152
+ "<|action_end|>",
153
+ "<|interpreter|>",
154
+ "<|plugin|>",
155
+ "<img>",
156
+ "</img>",
157
+ "<IMG_CONTEXT>",
158
+ "<quad>",
159
+ "</quad>",
160
+ "<ref>",
161
+ "</ref>",
162
+ "<box>",
163
+ "</box>"
164
+ ],
165
+ "auto_map": {
166
+ "AutoTokenizer": [
167
+ "tokenization_internlm2.InternLM2Tokenizer",
168
+ null
169
+ ]
170
+ },
171
+ "bos_token": "<s>",
172
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
173
+ "clean_up_tokenization_spaces": false,
174
+ "eos_token": "</s>",
175
+ "model_max_length": 8192,
176
+ "pad_token": "</s>",
177
+ "tokenizer_class": "InternLM2Tokenizer",
178
+ "unk_token": "<unk>"
179
+ }
OpenGVLab/InternVL2-4B/.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ examples/red-panda.mp4 filter=lfs diff=lfs merge=lfs -text
OpenGVLab/InternVL2-4B/README.md ADDED
@@ -0,0 +1,617 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pipeline_tag: image-text-to-text
4
+ library_name: transformers
5
+ base_model:
6
+ - OpenGVLab/InternViT-300M-448px
7
+ - microsoft/Phi-3-mini-128k-instruct
8
+ new_version: OpenGVLab/InternVL2_5-4B
9
+ base_model_relation: merge
10
+ language:
11
+ - multilingual
12
+ tags:
13
+ - internvl
14
+ - custom_code
15
+ ---
16
+
17
+ # InternVL2-4B
18
+
19
+ [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[📜 InternVL 1.0\]](https://huggingface.co/papers/2312.14238) [\[📜 InternVL 1.5\]](https://huggingface.co/papers/2404.16821) [\[📜 Mini-InternVL\]](https://arxiv.org/abs/2410.16261) [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271)
20
+
21
+ [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#quick-start) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)
22
+
23
+ <div align="center">
24
+ <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
25
+ </div>
26
+
27
+ ## Introduction
28
+
29
+ We are excited to announce the release of InternVL 2.0, the latest addition to the InternVL series of multimodal large language models. InternVL 2.0 features a variety of **instruction-tuned models**, ranging from 1 billion to 108 billion parameters. This repository contains the instruction-tuned InternVL2-4B model.
30
+
31
+ Compared to the state-of-the-art open-source multimodal large language models, InternVL 2.0 surpasses most open-source models. It demonstrates competitive performance on par with proprietary commercial models across various capabilities, including document and chart comprehension, infographics QA, scene text understanding and OCR tasks, scientific and mathematical problem solving, as well as cultural understanding and integrated multimodal capabilities.
32
+
33
+ InternVL 2.0 is trained with an 8k context window and utilizes training data consisting of long texts, multiple images, and videos, significantly improving its ability to handle these types of inputs compared to InternVL 1.5. For more details, please refer to our [blog](https://internvl.github.io/blog/2024-07-02-InternVL-2.0/) and [GitHub](https://github.com/OpenGVLab/InternVL).
34
+
35
+ | Model Name | Vision Part | Language Part | HF Link | MS Link |
36
+ | :------------------: | :---------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------: | :--------------------------------------------------------------: | :--------------------------------------------------------------------: |
37
+ | InternVL2-1B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-1B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-1B) |
38
+ | InternVL2-2B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [internlm2-chat-1_8b](https://huggingface.co/internlm/internlm2-chat-1_8b) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-2B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-2B) |
39
+ | InternVL2-4B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-4B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-4B) |
40
+ | InternVL2-8B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-8B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-8B) |
41
+ | InternVL2-26B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [internlm2-chat-20b](https://huggingface.co/internlm/internlm2-chat-20b) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-26B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-26B) |
42
+ | InternVL2-40B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-40B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-40B) |
43
+ | InternVL2-Llama3-76B | [InternViT-6B-448px-V1-5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-5) | [Hermes-2-Theta-Llama-3-70B](https://huggingface.co/NousResearch/Hermes-2-Theta-Llama-3-70B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2-Llama3-76B) | [🤖 link](https://modelscope.cn/models/OpenGVLab/InternVL2-Llama3-76B) |
44
+
45
+ ## Model Details
46
+
47
+ InternVL 2.0 is a multimodal large language model series, featuring models of various sizes. For each size, we release instruction-tuned models optimized for multimodal tasks. InternVL2-4B consists of [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px), an MLP projector, and [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct).
48
+
49
+ ## Performance
50
+
51
+ ### Image Benchmarks
52
+
53
+ | Benchmark | Phi-3-Vision | Mini-InternVL-4B-1-5 | InternVL2-4B |
54
+ | :--------------------------: | :----------: | :------------------: | :----------: |
55
+ | Model Size | 4.2B | 4.2B | 4.2B |
56
+ | | | | |
57
+ | DocVQA<sub>test</sub> | - | 87.7 | 89.2 |
58
+ | ChartQA<sub>test</sub> | 81.4 | 81.0 | 81.5 |
59
+ | InfoVQA<sub>test</sub> | - | 64.6 | 67.0 |
60
+ | TextVQA<sub>val</sub> | 70.9 | 72.5 | 74.4 |
61
+ | OCRBench | 639 | 638 | 788 |
62
+ | MME<sub>sum</sub> | 1508.0 | 2053.6 | 2064.1 |
63
+ | RealWorldQA | 58.8 | 60.1 | 60.7 |
64
+ | AI2D<sub>test</sub> | 76.7 | 76.9 | 78.9 |
65
+ | MMMU<sub>val</sub> | 46.1 | 45.1 | 47.9 |
66
+ | MMBench-EN<sub>test</sub> | 73.6 | 76.2 | 78.6 |
67
+ | MMBench-CN<sub>test</sub> | - | 70.3 | 73.9 |
68
+ | CCBench<sub>dev</sub> | 24.1 | 58.8 | 66.5 |
69
+ | MMVet<sub>GPT-4-0613</sub> | - | 46.7 | 55.7 |
70
+ | MMVet<sub>GPT-4-Turbo</sub> | 44.1 | 43.6 | 51.0 |
71
+ | SEED-Image | 70.9 | 72.5 | 73.7 |
72
+ | HallBench<sub>avg</sub> | 39.0 | 42.8 | 41.9 |
73
+ | MathVista<sub>testmini</sub> | 44.5 | 53.7 | 58.6 |
74
+ | OpenCompass<sub>avg</sub> | 53.6 | 56.2 | 60.6 |
75
+
76
+ - For more details and evaluation reproduction, please refer to our [Evaluation Guide](https://internvl.readthedocs.io/en/latest/internvl2.0/evaluation.html).
77
+
78
+ - We simultaneously use [InternVL](https://github.com/OpenGVLab/InternVL) and [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) repositories for model evaluation. Specifically, the results reported for DocVQA, ChartQA, InfoVQA, TextVQA, MME, AI2D, MMBench, CCBench, MMVet (GPT-4-0613), and SEED-Image were tested using the InternVL repository. MMMU, OCRBench, RealWorldQA, HallBench, MMVet (GPT-4-Turbo), and MathVista were evaluated using the VLMEvalKit.
79
+
80
+ ### Video Benchmarks
81
+
82
+ | Benchmark | VideoChat2-Phi3 | VideoChat2-HD-Mistral | Mini-InternVL-4B-1-5 | InternVL2-4B |
83
+ | :-------------------------: | :-------------: | :-------------------: | :------------------: | :----------: |
84
+ | Model Size | 4B | 7B | 4.2B | 4.2B |
85
+ | | | | | |
86
+ | MVBench | 55.1 | 60.4 | 46.9 | 63.7 |
87
+ | MMBench-Video<sub>8f</sub> | - | - | 1.06 | 1.10 |
88
+ | MMBench-Video<sub>16f</sub> | - | - | 1.10 | 1.18 |
89
+ | Video-MME<br>w/o subs | - | 42.3 | 50.2 | 51.4 |
90
+ | Video-MME<br>w subs | - | 54.6 | 52.7 | 53.4 |
91
+
92
+ - We evaluate our models on MVBench and Video-MME by extracting 16 frames from each video, and each frame was resized to a 448x448 image.
93
+
94
+ ### Grounding Benchmarks
95
+
96
+ | Model | avg. | RefCOCO<br>(val) | RefCOCO<br>(testA) | RefCOCO<br>(testB) | RefCOCO+<br>(val) | RefCOCO+<br>(testA) | RefCOCO+<br>(testB) | RefCOCO‑g<br>(val) | RefCOCO‑g<br>(test) |
97
+ | :----------------------------: | :--: | :--------------: | :----------------: | :----------------: | :---------------: | :-----------------: | :-----------------: | :----------------: | :-----------------: |
98
+ | UNINEXT-H<br>(Specialist SOTA) | 88.9 | 92.6 | 94.3 | 91.5 | 85.2 | 89.6 | 79.8 | 88.7 | 89.4 |
99
+ | | | | | | | | | | |
100
+ | Mini-InternVL-<br>Chat-2B-V1-5 | 75.8 | 80.7 | 86.7 | 72.9 | 72.5 | 82.3 | 60.8 | 75.6 | 74.9 |
101
+ | Mini-InternVL-<br>Chat-4B-V1-5 | 84.4 | 88.0 | 91.4 | 83.5 | 81.5 | 87.4 | 73.8 | 84.7 | 84.6 |
102
+ | InternVL‑Chat‑V1‑5 | 88.8 | 91.4 | 93.7 | 87.1 | 87.0 | 92.3 | 80.9 | 88.5 | 89.3 |
103
+ | | | | | | | | | | |
104
+ | InternVL2‑1B | 79.9 | 83.6 | 88.7 | 79.8 | 76.0 | 83.6 | 67.7 | 80.2 | 79.9 |
105
+ | InternVL2‑2B | 77.7 | 82.3 | 88.2 | 75.9 | 73.5 | 82.8 | 63.3 | 77.6 | 78.3 |
106
+ | InternVL2‑4B | 84.4 | 88.5 | 91.2 | 83.9 | 81.2 | 87.2 | 73.8 | 84.6 | 84.6 |
107
+ | InternVL2‑8B | 82.9 | 87.1 | 91.1 | 80.7 | 79.8 | 87.9 | 71.4 | 82.7 | 82.7 |
108
+ | InternVL2‑26B | 88.5 | 91.2 | 93.3 | 87.4 | 86.8 | 91.0 | 81.2 | 88.5 | 88.6 |
109
+ | InternVL2‑40B | 90.3 | 93.0 | 94.7 | 89.2 | 88.5 | 92.8 | 83.6 | 90.3 | 90.6 |
110
+ | InternVL2-<br>Llama3‑76B | 90.0 | 92.2 | 94.8 | 88.4 | 88.8 | 93.1 | 82.8 | 89.5 | 90.3 |
111
+
112
+ - We use the following prompt to evaluate InternVL's grounding ability: `Please provide the bounding box coordinates of the region this sentence describes: <ref>{}</ref>`
113
+
114
+ Limitations: Although we have made efforts to ensure the safety of the model during the training process and to encourage the model to generate text that complies with ethical and legal requirements, the model may still produce unexpected outputs due to its size and probabilistic generation paradigm. For example, the generated responses may contain biases, discrimination, or other harmful content. Please do not propagate such content. We are not responsible for any consequences resulting from the dissemination of harmful information.
115
+
116
+ ## Quick Start
117
+
118
+ We provide an example code to run `InternVL2-4B` using `transformers`.
119
+
120
+ > Please use transformers>=4.37.2 to ensure the model works normally.
121
+
122
+ ### Model Loading
123
+
124
+ #### 16-bit (bf16 / fp16)
125
+
126
+ ```python
127
+ import torch
128
+ from transformers import AutoTokenizer, AutoModel
129
+ path = "OpenGVLab/InternVL2-4B"
130
+ model = AutoModel.from_pretrained(
131
+ path,
132
+ torch_dtype=torch.bfloat16,
133
+ low_cpu_mem_usage=True,
134
+ use_flash_attn=True,
135
+ trust_remote_code=True).eval().cuda()
136
+ ```
137
+
138
+ #### BNB 8-bit Quantization
139
+
140
+ ```python
141
+ import torch
142
+ from transformers import AutoTokenizer, AutoModel
143
+ path = "OpenGVLab/InternVL2-4B"
144
+ model = AutoModel.from_pretrained(
145
+ path,
146
+ torch_dtype=torch.bfloat16,
147
+ load_in_8bit=True,
148
+ low_cpu_mem_usage=True,
149
+ use_flash_attn=True,
150
+ trust_remote_code=True).eval()
151
+ ```
152
+
153
+ #### Multiple GPUs
154
+
155
+ The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
156
+
157
+ ```python
158
+ import math
159
+ import torch
160
+ from transformers import AutoTokenizer, AutoModel
161
+
162
+ def split_model(model_name):
163
+ device_map = {}
164
+ world_size = torch.cuda.device_count()
165
+ num_layers = {
166
+ 'InternVL2-1B': 24, 'InternVL2-2B': 24, 'InternVL2-4B': 32, 'InternVL2-8B': 32,
167
+ 'InternVL2-26B': 48, 'InternVL2-40B': 60, 'InternVL2-Llama3-76B': 80}[model_name]
168
+ # Since the first GPU will be used for ViT, treat it as half a GPU.
169
+ num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
170
+ num_layers_per_gpu = [num_layers_per_gpu] * world_size
171
+ num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
172
+ layer_cnt = 0
173
+ for i, num_layer in enumerate(num_layers_per_gpu):
174
+ for j in range(num_layer):
175
+ device_map[f'language_model.model.layers.{layer_cnt}'] = i
176
+ layer_cnt += 1
177
+ device_map['vision_model'] = 0
178
+ device_map['mlp1'] = 0
179
+ device_map['language_model.model.tok_embeddings'] = 0
180
+ device_map['language_model.model.embed_tokens'] = 0
181
+ device_map['language_model.output'] = 0
182
+ device_map['language_model.model.norm'] = 0
183
+ device_map['language_model.lm_head'] = 0
184
+ device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
185
+
186
+ return device_map
187
+
188
+ path = "OpenGVLab/InternVL2-4B"
189
+ device_map = split_model('InternVL2-4B')
190
+ model = AutoModel.from_pretrained(
191
+ path,
192
+ torch_dtype=torch.bfloat16,
193
+ low_cpu_mem_usage=True,
194
+ use_flash_attn=True,
195
+ trust_remote_code=True,
196
+ device_map=device_map).eval()
197
+ ```
198
+
199
+ ### Inference with Transformers
200
+
201
+ ```python
202
+ import numpy as np
203
+ import torch
204
+ import torchvision.transforms as T
205
+ from decord import VideoReader, cpu
206
+ from PIL import Image
207
+ from torchvision.transforms.functional import InterpolationMode
208
+ from transformers import AutoModel, AutoTokenizer
209
+
210
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
211
+ IMAGENET_STD = (0.229, 0.224, 0.225)
212
+
213
+ def build_transform(input_size):
214
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
215
+ transform = T.Compose([
216
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
217
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
218
+ T.ToTensor(),
219
+ T.Normalize(mean=MEAN, std=STD)
220
+ ])
221
+ return transform
222
+
223
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
224
+ best_ratio_diff = float('inf')
225
+ best_ratio = (1, 1)
226
+ area = width * height
227
+ for ratio in target_ratios:
228
+ target_aspect_ratio = ratio[0] / ratio[1]
229
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
230
+ if ratio_diff < best_ratio_diff:
231
+ best_ratio_diff = ratio_diff
232
+ best_ratio = ratio
233
+ elif ratio_diff == best_ratio_diff:
234
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
235
+ best_ratio = ratio
236
+ return best_ratio
237
+
238
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
239
+ orig_width, orig_height = image.size
240
+ aspect_ratio = orig_width / orig_height
241
+
242
+ # calculate the existing image aspect ratio
243
+ target_ratios = set(
244
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
245
+ i * j <= max_num and i * j >= min_num)
246
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
247
+
248
+ # find the closest aspect ratio to the target
249
+ target_aspect_ratio = find_closest_aspect_ratio(
250
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
251
+
252
+ # calculate the target width and height
253
+ target_width = image_size * target_aspect_ratio[0]
254
+ target_height = image_size * target_aspect_ratio[1]
255
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
256
+
257
+ # resize the image
258
+ resized_img = image.resize((target_width, target_height))
259
+ processed_images = []
260
+ for i in range(blocks):
261
+ box = (
262
+ (i % (target_width // image_size)) * image_size,
263
+ (i // (target_width // image_size)) * image_size,
264
+ ((i % (target_width // image_size)) + 1) * image_size,
265
+ ((i // (target_width // image_size)) + 1) * image_size
266
+ )
267
+ # split the image
268
+ split_img = resized_img.crop(box)
269
+ processed_images.append(split_img)
270
+ assert len(processed_images) == blocks
271
+ if use_thumbnail and len(processed_images) != 1:
272
+ thumbnail_img = image.resize((image_size, image_size))
273
+ processed_images.append(thumbnail_img)
274
+ return processed_images
275
+
276
+ def load_image(image_file, input_size=448, max_num=12):
277
+ image = Image.open(image_file).convert('RGB')
278
+ transform = build_transform(input_size=input_size)
279
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
280
+ pixel_values = [transform(image) for image in images]
281
+ pixel_values = torch.stack(pixel_values)
282
+ return pixel_values
283
+
284
+ # If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
285
+ path = 'OpenGVLab/InternVL2-4B'
286
+ model = AutoModel.from_pretrained(
287
+ path,
288
+ torch_dtype=torch.bfloat16,
289
+ low_cpu_mem_usage=True,
290
+ use_flash_attn=True,
291
+ trust_remote_code=True).eval().cuda()
292
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
293
+
294
+ # set the max number of tiles in `max_num`
295
+ pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
296
+ generation_config = dict(max_new_tokens=1024, do_sample=True)
297
+
298
+ # pure-text conversation (纯文本对话)
299
+ question = 'Hello, who are you?'
300
+ response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
301
+ print(f'User: {question}\nAssistant: {response}')
302
+
303
+ question = 'Can you tell me a story?'
304
+ response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
305
+ print(f'User: {question}\nAssistant: {response}')
306
+
307
+ # single-image single-round conversation (单图单轮对话)
308
+ question = '<image>\nPlease describe the image shortly.'
309
+ response = model.chat(tokenizer, pixel_values, question, generation_config)
310
+ print(f'User: {question}\nAssistant: {response}')
311
+
312
+ # single-image multi-round conversation (单图多轮对话)
313
+ question = '<image>\nPlease describe the image in detail.'
314
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
315
+ print(f'User: {question}\nAssistant: {response}')
316
+
317
+ question = 'Please write a poem according to the image.'
318
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
319
+ print(f'User: {question}\nAssistant: {response}')
320
+
321
+ # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
322
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
323
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
324
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
325
+
326
+ question = '<image>\nDescribe the two images in detail.'
327
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
328
+ history=None, return_history=True)
329
+ print(f'User: {question}\nAssistant: {response}')
330
+
331
+ question = 'What are the similarities and differences between these two images.'
332
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
333
+ history=history, return_history=True)
334
+ print(f'User: {question}\nAssistant: {response}')
335
+
336
+ # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
337
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
338
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
339
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
340
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
341
+
342
+ question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
343
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
344
+ num_patches_list=num_patches_list,
345
+ history=None, return_history=True)
346
+ print(f'User: {question}\nAssistant: {response}')
347
+
348
+ question = 'What are the similarities and differences between these two images.'
349
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
350
+ num_patches_list=num_patches_list,
351
+ history=history, return_history=True)
352
+ print(f'User: {question}\nAssistant: {response}')
353
+
354
+ # batch inference, single image per sample (单图批处理)
355
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
356
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
357
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
358
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
359
+
360
+ questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
361
+ responses = model.batch_chat(tokenizer, pixel_values,
362
+ num_patches_list=num_patches_list,
363
+ questions=questions,
364
+ generation_config=generation_config)
365
+ for question, response in zip(questions, responses):
366
+ print(f'User: {question}\nAssistant: {response}')
367
+
368
+ # video multi-round conversation (视频多轮对话)
369
+ def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
370
+ if bound:
371
+ start, end = bound[0], bound[1]
372
+ else:
373
+ start, end = -100000, 100000
374
+ start_idx = max(first_idx, round(start * fps))
375
+ end_idx = min(round(end * fps), max_frame)
376
+ seg_size = float(end_idx - start_idx) / num_segments
377
+ frame_indices = np.array([
378
+ int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
379
+ for idx in range(num_segments)
380
+ ])
381
+ return frame_indices
382
+
383
+ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
384
+ vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
385
+ max_frame = len(vr) - 1
386
+ fps = float(vr.get_avg_fps())
387
+
388
+ pixel_values_list, num_patches_list = [], []
389
+ transform = build_transform(input_size=input_size)
390
+ frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
391
+ for frame_index in frame_indices:
392
+ img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
393
+ img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
394
+ pixel_values = [transform(tile) for tile in img]
395
+ pixel_values = torch.stack(pixel_values)
396
+ num_patches_list.append(pixel_values.shape[0])
397
+ pixel_values_list.append(pixel_values)
398
+ pixel_values = torch.cat(pixel_values_list)
399
+ return pixel_values, num_patches_list
400
+
401
+ video_path = './examples/red-panda.mp4'
402
+ pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
403
+ pixel_values = pixel_values.to(torch.bfloat16).cuda()
404
+ video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
405
+ question = video_prefix + 'What is the red panda doing?'
406
+ # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
407
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
408
+ num_patches_list=num_patches_list, history=None, return_history=True)
409
+ print(f'User: {question}\nAssistant: {response}')
410
+
411
+ question = 'Describe this video in detail.'
412
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
413
+ num_patches_list=num_patches_list, history=history, return_history=True)
414
+ print(f'User: {question}\nAssistant: {response}')
415
+ ```
416
+
417
+ #### Streaming Output
418
+
419
+ Besides this method, you can also use the following code to get streamed output.
420
+
421
+ ```python
422
+ from transformers import TextIteratorStreamer
423
+ from threading import Thread
424
+
425
+ # Initialize the streamer
426
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
427
+ # Define the generation configuration
428
+ generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
429
+ # Start the model chat in a separate thread
430
+ thread = Thread(target=model.chat, kwargs=dict(
431
+ tokenizer=tokenizer, pixel_values=pixel_values, question=question,
432
+ history=None, return_history=False, generation_config=generation_config,
433
+ ))
434
+ thread.start()
435
+
436
+ # Initialize an empty string to store the generated text
437
+ generated_text = ''
438
+ # Loop through the streamer to get the new text as it is generated
439
+ for new_text in streamer:
440
+ if new_text == model.conv_template.sep:
441
+ break
442
+ generated_text += new_text
443
+ print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line
444
+ ```
445
+
446
+ ## Finetune
447
+
448
+ Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTurner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
449
+
450
+ ## Deployment
451
+
452
+ ### LMDeploy
453
+
454
+ LMDeploy is a toolkit for compressing, deploying, and serving LLMs & VLMs.
455
+
456
+ ```sh
457
+ pip install lmdeploy>=0.5.3
458
+ ```
459
+
460
+ LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
461
+
462
+ #### A 'Hello, world' Example
463
+
464
+ ```python
465
+ from lmdeploy import pipeline, TurbomindEngineConfig
466
+ from lmdeploy.vl import load_image
467
+
468
+ model = 'OpenGVLab/InternVL2-4B'
469
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
470
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
471
+ response = pipe(('describe this image', image))
472
+ print(response.text)
473
+ ```
474
+
475
+ If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
476
+
477
+ #### Multi-images Inference
478
+
479
+ When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
480
+
481
+ > Warning: Due to the scarcity of multi-image conversation data, the performance on multi-image tasks may be unstable, and it may require multiple attempts to achieve satisfactory results.
482
+
483
+ ```python
484
+ from lmdeploy import pipeline, TurbomindEngineConfig
485
+ from lmdeploy.vl import load_image
486
+ from lmdeploy.vl.constants import IMAGE_TOKEN
487
+
488
+ model = 'OpenGVLab/InternVL2-4B'
489
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
490
+
491
+ image_urls=[
492
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
493
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
494
+ ]
495
+
496
+ images = [load_image(img_url) for img_url in image_urls]
497
+ # Numbering images improves multi-image conversations
498
+ response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
499
+ print(response.text)
500
+ ```
501
+
502
+ #### Batch Prompts Inference
503
+
504
+ Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
505
+
506
+ ```python
507
+ from lmdeploy import pipeline, TurbomindEngineConfig
508
+ from lmdeploy.vl import load_image
509
+
510
+ model = 'OpenGVLab/InternVL2-4B'
511
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
512
+
513
+ image_urls=[
514
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
515
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
516
+ ]
517
+ prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
518
+ response = pipe(prompts)
519
+ print(response)
520
+ ```
521
+
522
+ #### Multi-turn Conversation
523
+
524
+ There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
525
+
526
+ ```python
527
+ from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
528
+ from lmdeploy.vl import load_image
529
+
530
+ model = 'OpenGVLab/InternVL2-4B'
531
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
532
+
533
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
534
+ gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
535
+ sess = pipe.chat(('describe this image', image), gen_config=gen_config)
536
+ print(sess.response.text)
537
+ sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
538
+ print(sess.response.text)
539
+ ```
540
+
541
+ #### Service
542
+
543
+ LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
544
+
545
+ ```shell
546
+ lmdeploy serve api_server OpenGVLab/InternVL2-4B --server-port 23333
547
+ ```
548
+
549
+ To use the OpenAI-style interface, you need to install OpenAI:
550
+
551
+ ```shell
552
+ pip install openai
553
+ ```
554
+
555
+ Then, use the code below to make the API call:
556
+
557
+ ```python
558
+ from openai import OpenAI
559
+
560
+ client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
561
+ model_name = client.models.list().data[0].id
562
+ response = client.chat.completions.create(
563
+ model=model_name,
564
+ messages=[{
565
+ 'role':
566
+ 'user',
567
+ 'content': [{
568
+ 'type': 'text',
569
+ 'text': 'describe this image',
570
+ }, {
571
+ 'type': 'image_url',
572
+ 'image_url': {
573
+ 'url':
574
+ 'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
575
+ },
576
+ }],
577
+ }],
578
+ temperature=0.8,
579
+ top_p=0.8)
580
+ print(response)
581
+ ```
582
+
583
+ ## License
584
+
585
+ This project is released under the MIT License. This project uses the pre-trained Phi-3-mini-128k-instruct as a component, which is also licensed under the MIT License.
586
+
587
+ ## Citation
588
+
589
+ If you find this project useful in your research, please consider citing:
590
+
591
+ ```BibTeX
592
+ @article{chen2024expanding,
593
+ title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
594
+ author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
595
+ journal={arXiv preprint arXiv:2412.05271},
596
+ year={2024}
597
+ }
598
+ @article{gao2024mini,
599
+ title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
600
+ author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
601
+ journal={arXiv preprint arXiv:2410.16261},
602
+ year={2024}
603
+ }
604
+ @article{chen2024far,
605
+ title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
606
+ author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
607
+ journal={arXiv preprint arXiv:2404.16821},
608
+ year={2024}
609
+ }
610
+ @inproceedings{chen2024internvl,
611
+ title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
612
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
613
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
614
+ pages={24185--24198},
615
+ year={2024}
616
+ }
617
+ ```
OpenGVLab/InternVL2-4B/added_tokens.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 32019,
3
+ "</img>": 32012,
4
+ "</quad>": 32015,
5
+ "</ref>": 32017,
6
+ "<IMG_CONTEXT>": 32013,
7
+ "<box>": 32018,
8
+ "<img>": 32011,
9
+ "<quad>": 32014,
10
+ "<ref>": 32016,
11
+ "<|assistant|>": 32001,
12
+ "<|endoftext|>": 32000,
13
+ "<|end|>": 32007,
14
+ "<|placeholder1|>": 32002,
15
+ "<|placeholder2|>": 32003,
16
+ "<|placeholder3|>": 32004,
17
+ "<|placeholder4|>": 32005,
18
+ "<|placeholder5|>": 32008,
19
+ "<|placeholder6|>": 32009,
20
+ "<|system|>": 32006,
21
+ "<|user|>": 32010
22
+ }
OpenGVLab/InternVL2-4B/config.json ADDED
@@ -0,0 +1,246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "InternVLChatModel"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
8
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
9
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
10
+ },
11
+ "downsample_ratio": 0.5,
12
+ "dynamic_image_size": true,
13
+ "force_image_size": 448,
14
+ "llm_config": {
15
+ "_name_or_path": "microsoft/Phi-3-mini-128k-instruct",
16
+ "add_cross_attention": false,
17
+ "architectures": [
18
+ "Phi3ForCausalLM"
19
+ ],
20
+ "attn_implementation": "flash_attention_2",
21
+ "attention_dropout": 0.0,
22
+ "auto_map": {
23
+ "AutoConfig": "configuration_phi3.Phi3Config",
24
+ "AutoModel": "modeling_phi3.Phi3ForCausalLM",
25
+ "AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM"
26
+ },
27
+ "bad_words_ids": null,
28
+ "begin_suppress_tokens": null,
29
+ "bos_token_id": 1,
30
+ "chunk_size_feed_forward": 0,
31
+ "cross_attention_hidden_size": null,
32
+ "decoder_start_token_id": null,
33
+ "diversity_penalty": 0.0,
34
+ "do_sample": false,
35
+ "early_stopping": false,
36
+ "embd_pdrop": 0.0,
37
+ "encoder_no_repeat_ngram_size": 0,
38
+ "eos_token_id": 32000,
39
+ "exponential_decay_length_penalty": null,
40
+ "finetuning_task": null,
41
+ "forced_bos_token_id": null,
42
+ "forced_eos_token_id": null,
43
+ "hidden_act": "silu",
44
+ "hidden_size": 3072,
45
+ "id2label": {
46
+ "0": "LABEL_0",
47
+ "1": "LABEL_1"
48
+ },
49
+ "initializer_range": 0.02,
50
+ "intermediate_size": 8192,
51
+ "is_decoder": false,
52
+ "is_encoder_decoder": false,
53
+ "label2id": {
54
+ "LABEL_0": 0,
55
+ "LABEL_1": 1
56
+ },
57
+ "length_penalty": 1.0,
58
+ "max_length": 20,
59
+ "max_position_embeddings": 131072,
60
+ "min_length": 0,
61
+ "model_type": "phi3",
62
+ "no_repeat_ngram_size": 0,
63
+ "num_attention_heads": 32,
64
+ "num_beam_groups": 1,
65
+ "num_beams": 1,
66
+ "num_hidden_layers": 32,
67
+ "num_key_value_heads": 32,
68
+ "num_return_sequences": 1,
69
+ "original_max_position_embeddings": 4096,
70
+ "output_attentions": false,
71
+ "output_hidden_states": false,
72
+ "output_scores": false,
73
+ "pad_token_id": 32000,
74
+ "prefix": null,
75
+ "problem_type": null,
76
+ "pruned_heads": {},
77
+ "remove_invalid_values": false,
78
+ "repetition_penalty": 1.0,
79
+ "resid_pdrop": 0.0,
80
+ "return_dict": true,
81
+ "return_dict_in_generate": false,
82
+ "rms_norm_eps": 1e-05,
83
+ "rope_scaling": {
84
+ "long_factor": [
85
+ 1.0299999713897705,
86
+ 1.0499999523162842,
87
+ 1.0499999523162842,
88
+ 1.0799999237060547,
89
+ 1.2299998998641968,
90
+ 1.2299998998641968,
91
+ 1.2999999523162842,
92
+ 1.4499999284744263,
93
+ 1.5999999046325684,
94
+ 1.6499998569488525,
95
+ 1.8999998569488525,
96
+ 2.859999895095825,
97
+ 3.68999981880188,
98
+ 5.419999599456787,
99
+ 5.489999771118164,
100
+ 5.489999771118164,
101
+ 9.09000015258789,
102
+ 11.579999923706055,
103
+ 15.65999984741211,
104
+ 15.769999504089355,
105
+ 15.789999961853027,
106
+ 18.360000610351562,
107
+ 21.989999771118164,
108
+ 23.079999923706055,
109
+ 30.009998321533203,
110
+ 32.35000228881836,
111
+ 32.590003967285156,
112
+ 35.56000518798828,
113
+ 39.95000457763672,
114
+ 53.840003967285156,
115
+ 56.20000457763672,
116
+ 57.95000457763672,
117
+ 59.29000473022461,
118
+ 59.77000427246094,
119
+ 59.920005798339844,
120
+ 61.190006256103516,
121
+ 61.96000671386719,
122
+ 62.50000762939453,
123
+ 63.3700065612793,
124
+ 63.48000717163086,
125
+ 63.48000717163086,
126
+ 63.66000747680664,
127
+ 63.850006103515625,
128
+ 64.08000946044922,
129
+ 64.760009765625,
130
+ 64.80001068115234,
131
+ 64.81001281738281,
132
+ 64.81001281738281
133
+ ],
134
+ "short_factor": [
135
+ 1.05,
136
+ 1.05,
137
+ 1.05,
138
+ 1.1,
139
+ 1.1,
140
+ 1.1500000000000001,
141
+ 1.2000000000000002,
142
+ 1.2500000000000002,
143
+ 1.3000000000000003,
144
+ 1.3500000000000003,
145
+ 1.5000000000000004,
146
+ 2.000000000000001,
147
+ 2.000000000000001,
148
+ 2.000000000000001,
149
+ 2.000000000000001,
150
+ 2.000000000000001,
151
+ 2.000000000000001,
152
+ 2.000000000000001,
153
+ 2.000000000000001,
154
+ 2.000000000000001,
155
+ 2.000000000000001,
156
+ 2.000000000000001,
157
+ 2.000000000000001,
158
+ 2.000000000000001,
159
+ 2.000000000000001,
160
+ 2.000000000000001,
161
+ 2.000000000000001,
162
+ 2.000000000000001,
163
+ 2.000000000000001,
164
+ 2.000000000000001,
165
+ 2.000000000000001,
166
+ 2.000000000000001,
167
+ 2.0500000000000007,
168
+ 2.0500000000000007,
169
+ 2.0500000000000007,
170
+ 2.1000000000000005,
171
+ 2.1000000000000005,
172
+ 2.1000000000000005,
173
+ 2.1500000000000004,
174
+ 2.1500000000000004,
175
+ 2.3499999999999996,
176
+ 2.549999999999999,
177
+ 2.5999999999999988,
178
+ 2.5999999999999988,
179
+ 2.7499999999999982,
180
+ 2.849999999999998,
181
+ 2.849999999999998,
182
+ 2.9499999999999975
183
+ ],
184
+ "type": "su"
185
+ },
186
+ "rope_theta": 10000.0,
187
+ "sep_token_id": null,
188
+ "sliding_window": 262144,
189
+ "suppress_tokens": null,
190
+ "task_specific_params": null,
191
+ "temperature": 1.0,
192
+ "tf_legacy_loss": false,
193
+ "tie_encoder_decoder": false,
194
+ "tie_word_embeddings": false,
195
+ "tokenizer_class": null,
196
+ "top_k": 50,
197
+ "top_p": 1.0,
198
+ "torch_dtype": "bfloat16",
199
+ "torchscript": false,
200
+ "transformers_version": "4.37.2",
201
+ "typical_p": 1.0,
202
+ "use_bfloat16": true,
203
+ "use_cache": true,
204
+ "vocab_size": 32020
205
+ },
206
+ "max_dynamic_patch": 12,
207
+ "min_dynamic_patch": 1,
208
+ "model_type": "internvl_chat",
209
+ "ps_version": "v2",
210
+ "select_layer": -1,
211
+ "template": "phi3-chat",
212
+ "torch_dtype": "bfloat16",
213
+ "use_backbone_lora": 0,
214
+ "use_llm_lora": 0,
215
+ "use_thumbnail": true,
216
+ "vision_config": {
217
+ "architectures": [
218
+ "InternVisionModel"
219
+ ],
220
+ "attention_dropout": 0.0,
221
+ "drop_path_rate": 0.0,
222
+ "dropout": 0.0,
223
+ "hidden_act": "gelu",
224
+ "hidden_size": 1024,
225
+ "image_size": 448,
226
+ "initializer_factor": 1.0,
227
+ "initializer_range": 0.02,
228
+ "intermediate_size": 4096,
229
+ "layer_norm_eps": 1e-06,
230
+ "model_type": "intern_vit_6b",
231
+ "norm_type": "layer_norm",
232
+ "num_attention_heads": 16,
233
+ "num_channels": 3,
234
+ "num_hidden_layers": 24,
235
+ "output_attentions": false,
236
+ "output_hidden_states": false,
237
+ "patch_size": 14,
238
+ "qk_normalization": false,
239
+ "qkv_bias": true,
240
+ "return_dict": true,
241
+ "torch_dtype": "bfloat16",
242
+ "transformers_version": "4.37.2",
243
+ "use_bfloat16": true,
244
+ "use_flash_attn": true
245
+ }
246
+ }
OpenGVLab/InternVL2-4B/configuration_intern_vit.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import os
8
+ from typing import Union
9
+
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+
16
+ class InternVisionConfig(PretrainedConfig):
17
+ r"""
18
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
19
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
20
+
21
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
22
+ documentation from [`PretrainedConfig`] for more information.
23
+
24
+ Args:
25
+ num_channels (`int`, *optional*, defaults to 3):
26
+ Number of color channels in the input images (e.g., 3 for RGB).
27
+ patch_size (`int`, *optional*, defaults to 14):
28
+ The size (resolution) of each patch.
29
+ image_size (`int`, *optional*, defaults to 224):
30
+ The size (resolution) of each image.
31
+ qkv_bias (`bool`, *optional*, defaults to `False`):
32
+ Whether to add a bias to the queries and values in the self-attention layers.
33
+ hidden_size (`int`, *optional*, defaults to 3200):
34
+ Dimensionality of the encoder layers and the pooler layer.
35
+ num_attention_heads (`int`, *optional*, defaults to 25):
36
+ Number of attention heads for each attention layer in the Transformer encoder.
37
+ intermediate_size (`int`, *optional*, defaults to 12800):
38
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
39
+ qk_normalization (`bool`, *optional*, defaults to `True`):
40
+ Whether to normalize the queries and keys in the self-attention layers.
41
+ num_hidden_layers (`int`, *optional*, defaults to 48):
42
+ Number of hidden layers in the Transformer encoder.
43
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
44
+ Whether to use flash attention mechanism.
45
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
46
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
47
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
48
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
49
+ The epsilon used by the layer normalization layers.
50
+ dropout (`float`, *optional*, defaults to 0.0):
51
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
52
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
53
+ Dropout rate for stochastic depth.
54
+ attention_dropout (`float`, *optional*, defaults to 0.0):
55
+ The dropout ratio for the attention probabilities.
56
+ initializer_range (`float`, *optional*, defaults to 0.02):
57
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
58
+ initializer_factor (`float`, *optional*, defaults to 0.1):
59
+ A factor for layer scale.
60
+ """
61
+
62
+ model_type = 'intern_vit_6b'
63
+
64
+ def __init__(
65
+ self,
66
+ num_channels=3,
67
+ patch_size=14,
68
+ image_size=224,
69
+ qkv_bias=False,
70
+ hidden_size=3200,
71
+ num_attention_heads=25,
72
+ intermediate_size=12800,
73
+ qk_normalization=True,
74
+ num_hidden_layers=48,
75
+ use_flash_attn=True,
76
+ hidden_act='gelu',
77
+ norm_type='rms_norm',
78
+ layer_norm_eps=1e-6,
79
+ dropout=0.0,
80
+ drop_path_rate=0.0,
81
+ attention_dropout=0.0,
82
+ initializer_range=0.02,
83
+ initializer_factor=0.1,
84
+ **kwargs,
85
+ ):
86
+ super().__init__(**kwargs)
87
+
88
+ self.hidden_size = hidden_size
89
+ self.intermediate_size = intermediate_size
90
+ self.dropout = dropout
91
+ self.drop_path_rate = drop_path_rate
92
+ self.num_hidden_layers = num_hidden_layers
93
+ self.num_attention_heads = num_attention_heads
94
+ self.num_channels = num_channels
95
+ self.patch_size = patch_size
96
+ self.image_size = image_size
97
+ self.initializer_range = initializer_range
98
+ self.initializer_factor = initializer_factor
99
+ self.attention_dropout = attention_dropout
100
+ self.layer_norm_eps = layer_norm_eps
101
+ self.hidden_act = hidden_act
102
+ self.norm_type = norm_type
103
+ self.qkv_bias = qkv_bias
104
+ self.qk_normalization = qk_normalization
105
+ self.use_flash_attn = use_flash_attn
106
+
107
+ @classmethod
108
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
109
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
110
+
111
+ if 'vision_config' in config_dict:
112
+ config_dict = config_dict['vision_config']
113
+
114
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
115
+ logger.warning(
116
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
117
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
118
+ )
119
+
120
+ return cls.from_dict(config_dict, **kwargs)
OpenGVLab/InternVL2-4B/configuration_internvl_chat.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+ from .configuration_phi3 import Phi3Config
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+
19
+ class InternVLChatConfig(PretrainedConfig):
20
+ model_type = 'internvl_chat'
21
+ is_composition = True
22
+
23
+ def __init__(
24
+ self,
25
+ vision_config=None,
26
+ llm_config=None,
27
+ use_backbone_lora=0,
28
+ use_llm_lora=0,
29
+ select_layer=-1,
30
+ force_image_size=None,
31
+ downsample_ratio=0.5,
32
+ template=None,
33
+ dynamic_image_size=False,
34
+ use_thumbnail=False,
35
+ ps_version='v1',
36
+ min_dynamic_patch=1,
37
+ max_dynamic_patch=6,
38
+ **kwargs):
39
+ super().__init__(**kwargs)
40
+
41
+ if vision_config is None:
42
+ vision_config = {'architectures': ['InternVisionModel']}
43
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
44
+
45
+ if llm_config is None:
46
+ llm_config = {'architectures': ['Phi3ForCausalLM']}
47
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
48
+
49
+ self.vision_config = InternVisionConfig(**vision_config)
50
+ if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
51
+ self.llm_config = LlamaConfig(**llm_config)
52
+ elif llm_config.get('architectures')[0] == 'Phi3ForCausalLM':
53
+ self.llm_config = Phi3Config(**llm_config)
54
+ else:
55
+ raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
56
+ self.use_backbone_lora = use_backbone_lora
57
+ self.use_llm_lora = use_llm_lora
58
+ self.select_layer = select_layer
59
+ self.force_image_size = force_image_size
60
+ self.downsample_ratio = downsample_ratio
61
+ self.template = template
62
+ self.dynamic_image_size = dynamic_image_size
63
+ self.use_thumbnail = use_thumbnail
64
+ self.ps_version = ps_version # pixel shuffle version
65
+ self.min_dynamic_patch = min_dynamic_patch
66
+ self.max_dynamic_patch = max_dynamic_patch
67
+
68
+ logger.info(f'vision_select_layer: {self.select_layer}')
69
+ logger.info(f'ps_version: {self.ps_version}')
70
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
71
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
72
+
73
+ def to_dict(self):
74
+ """
75
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
76
+
77
+ Returns:
78
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
79
+ """
80
+ output = copy.deepcopy(self.__dict__)
81
+ output['vision_config'] = self.vision_config.to_dict()
82
+ output['llm_config'] = self.llm_config.to_dict()
83
+ output['model_type'] = self.__class__.model_type
84
+ output['use_backbone_lora'] = self.use_backbone_lora
85
+ output['use_llm_lora'] = self.use_llm_lora
86
+ output['select_layer'] = self.select_layer
87
+ output['force_image_size'] = self.force_image_size
88
+ output['downsample_ratio'] = self.downsample_ratio
89
+ output['template'] = self.template
90
+ output['dynamic_image_size'] = self.dynamic_image_size
91
+ output['use_thumbnail'] = self.use_thumbnail
92
+ output['ps_version'] = self.ps_version
93
+ output['min_dynamic_patch'] = self.min_dynamic_patch
94
+ output['max_dynamic_patch'] = self.max_dynamic_patch
95
+
96
+ return output
OpenGVLab/InternVL2-4B/configuration_phi3.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License atd
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """ Phi-3 model configuration"""
16
+
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ 'microsoft/Phi-3-mini-4k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json',
25
+ 'microsoft/Phi-3-mini-128k-instruct': 'https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json',
26
+ }
27
+
28
+
29
+ class Phi3Config(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
32
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
33
+ defaults will yield a similar configuration to that of the
34
+ [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 32064):
41
+ Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`Phi3Model`].
43
+ hidden_size (`int`, *optional*, defaults to 3072):
44
+ Dimension of the hidden representations.
45
+ intermediate_size (`int`, *optional*, defaults to 8192):
46
+ Dimension of the MLP representations.
47
+ num_hidden_layers (`int`, *optional*, defaults to 32):
48
+ Number of hidden layers in the Transformer decoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer decoder.
51
+ num_key_value_heads (`int`, *optional*):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
58
+ `num_attention_heads`.
59
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
60
+ Dropout probability for mlp outputs.
61
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
62
+ The dropout ratio for the embeddings.
63
+ attention_dropout (`float`, *optional*, defaults to 0.0):
64
+ The dropout ratio after computing the attention scores.
65
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
66
+ The non-linear activation function (function or string) in the decoder.
67
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
68
+ The maximum sequence length that this model might ever be used with.
69
+ original_max_position_embeddings (`int`, *optional*, defaults to 4096):
70
+ The maximum sequence length that this model was trained with. This is used to determine the size of the
71
+ original RoPE embeddings when using long scaling.
72
+ initializer_range (`float`, *optional*, defaults to 0.02):
73
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
74
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
75
+ The epsilon value used for the RMSNorm.
76
+ use_cache (`bool`, *optional*, defaults to `True`):
77
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
78
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
79
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
80
+ Whether to tie weight embeddings
81
+ rope_theta (`float`, *optional*, defaults to 10000.0):
82
+ The base period of the RoPE embeddings.
83
+ rope_scaling (`dict`, *optional*):
84
+ The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
85
+ contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
86
+ the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
87
+ divided by the number of attention heads divided by 2.
88
+ bos_token_id (`int`, *optional*, defaults to 1):
89
+ The id of the "beginning-of-sequence" token.
90
+ eos_token_id (`int`, *optional*, defaults to 32000):
91
+ The id of the "end-of-sequence" token.
92
+ pad_token_id (`int`, *optional*, defaults to 32000):
93
+ The id of the padding token.
94
+ sliding_window (`int`, *optional*):
95
+ Sliding window attention window size. If `None`, no sliding window is applied.
96
+
97
+ Example:
98
+
99
+ ```python
100
+ >>> from transformers import Phi3Model, Phi3Config
101
+
102
+ >>> # Initializing a Phi-3 style configuration
103
+ >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
104
+
105
+ >>> # Initializing a model from the configuration
106
+ >>> model = Phi3Model(configuration)
107
+
108
+ >>> # Accessing the model configuration
109
+ >>> configuration = model.config
110
+ ```"""
111
+
112
+ model_type = 'phi3'
113
+ keys_to_ignore_at_inference = ['past_key_values']
114
+
115
+ def __init__(
116
+ self,
117
+ vocab_size=32064,
118
+ hidden_size=3072,
119
+ intermediate_size=8192,
120
+ num_hidden_layers=32,
121
+ num_attention_heads=32,
122
+ num_key_value_heads=None,
123
+ resid_pdrop=0.0,
124
+ embd_pdrop=0.0,
125
+ attention_dropout=0.0,
126
+ hidden_act='silu',
127
+ max_position_embeddings=4096,
128
+ original_max_position_embeddings=4096,
129
+ initializer_range=0.02,
130
+ rms_norm_eps=1e-5,
131
+ use_cache=True,
132
+ tie_word_embeddings=False,
133
+ rope_theta=10000.0,
134
+ rope_scaling=None,
135
+ bos_token_id=1,
136
+ eos_token_id=32000,
137
+ pad_token_id=32000,
138
+ sliding_window=None,
139
+ **kwargs,
140
+ ):
141
+ self.vocab_size = vocab_size
142
+ self.hidden_size = hidden_size
143
+ self.intermediate_size = intermediate_size
144
+ self.num_hidden_layers = num_hidden_layers
145
+ self.num_attention_heads = num_attention_heads
146
+
147
+ if num_key_value_heads is None:
148
+ num_key_value_heads = num_attention_heads
149
+
150
+ self.num_key_value_heads = num_key_value_heads
151
+ self.resid_pdrop = resid_pdrop
152
+ self.embd_pdrop = embd_pdrop
153
+ self.attention_dropout = attention_dropout
154
+ self.hidden_act = hidden_act
155
+ self.max_position_embeddings = max_position_embeddings
156
+ self.original_max_position_embeddings = original_max_position_embeddings
157
+ self.initializer_range = initializer_range
158
+ self.rms_norm_eps = rms_norm_eps
159
+ self.use_cache = use_cache
160
+ self.rope_theta = rope_theta
161
+ self.rope_scaling = rope_scaling
162
+ self._rope_scaling_validation()
163
+ self.sliding_window = sliding_window
164
+
165
+ super().__init__(
166
+ bos_token_id=bos_token_id,
167
+ eos_token_id=eos_token_id,
168
+ pad_token_id=pad_token_id,
169
+ tie_word_embeddings=tie_word_embeddings,
170
+ **kwargs,
171
+ )
172
+
173
+ def _rope_scaling_validation(self):
174
+ """
175
+ Validate the `rope_scaling` configuration.
176
+ """
177
+ if self.rope_scaling is None:
178
+ return
179
+
180
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
181
+ raise ValueError(
182
+ '`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, '
183
+ f'got {self.rope_scaling}'
184
+ )
185
+ rope_scaling_type = self.rope_scaling.get('type', None)
186
+ rope_scaling_short_factor = self.rope_scaling.get('short_factor', None)
187
+ rope_scaling_long_factor = self.rope_scaling.get('long_factor', None)
188
+ if rope_scaling_type is None or rope_scaling_type not in ['su', 'yarn']:
189
+ raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
190
+ if not (
191
+ isinstance(rope_scaling_short_factor, list)
192
+ and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
193
+ ):
194
+ raise ValueError(
195
+ f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
196
+ )
197
+ if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
198
+ raise ValueError(
199
+ f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
200
+ )
201
+ if not (
202
+ isinstance(rope_scaling_long_factor, list)
203
+ and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
204
+ ):
205
+ raise ValueError(
206
+ f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
207
+ )
208
+ if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
209
+ raise ValueError(
210
+ f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
211
+ )
OpenGVLab/InternVL2-4B/conversation.py ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+
7
+ Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
8
+ """
9
+
10
+ import dataclasses
11
+ from enum import IntEnum, auto
12
+ from typing import Dict, List, Tuple, Union
13
+
14
+
15
+ class SeparatorStyle(IntEnum):
16
+ """Separator styles."""
17
+
18
+ ADD_COLON_SINGLE = auto()
19
+ ADD_COLON_TWO = auto()
20
+ ADD_COLON_SPACE_SINGLE = auto()
21
+ NO_COLON_SINGLE = auto()
22
+ NO_COLON_TWO = auto()
23
+ ADD_NEW_LINE_SINGLE = auto()
24
+ LLAMA2 = auto()
25
+ CHATGLM = auto()
26
+ CHATML = auto()
27
+ CHATINTERN = auto()
28
+ DOLLY = auto()
29
+ RWKV = auto()
30
+ PHOENIX = auto()
31
+ ROBIN = auto()
32
+ FALCON_CHAT = auto()
33
+ CHATGLM3 = auto()
34
+ INTERNVL_ZH = auto()
35
+ MPT = auto()
36
+
37
+
38
+ @dataclasses.dataclass
39
+ class Conversation:
40
+ """A class that manages prompt templates and keeps all conversation history."""
41
+
42
+ # The name of this template
43
+ name: str
44
+ # The template of the system prompt
45
+ system_template: str = '{system_message}'
46
+ # The system message
47
+ system_message: str = ''
48
+ # The names of two roles
49
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
50
+ # All messages. Each item is (role, message).
51
+ messages: List[List[str]] = ()
52
+ # The number of few shot examples
53
+ offset: int = 0
54
+ # The separator style and configurations
55
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
56
+ sep: str = '\n'
57
+ sep2: str = None
58
+ # Stop criteria (the default one is EOS token)
59
+ stop_str: Union[str, List[str]] = None
60
+ # Stops generation if meeting any token in this list
61
+ stop_token_ids: List[int] = None
62
+
63
+ def get_prompt(self) -> str:
64
+ """Get the prompt for generation."""
65
+ system_prompt = self.system_template.format(system_message=self.system_message)
66
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
67
+ ret = system_prompt + self.sep
68
+ for role, message in self.messages:
69
+ if message:
70
+ ret += role + ': ' + message + self.sep
71
+ else:
72
+ ret += role + ':'
73
+ return ret
74
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
75
+ seps = [self.sep, self.sep2]
76
+ ret = system_prompt + seps[0]
77
+ for i, (role, message) in enumerate(self.messages):
78
+ if message:
79
+ ret += role + ': ' + message + seps[i % 2]
80
+ else:
81
+ ret += role + ':'
82
+ return ret
83
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
84
+ ret = system_prompt + self.sep
85
+ for role, message in self.messages:
86
+ if message:
87
+ ret += role + ': ' + message + self.sep
88
+ else:
89
+ ret += role + ': ' # must be end with a space
90
+ return ret
91
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
92
+ ret = '' if system_prompt == '' else system_prompt + self.sep
93
+ for role, message in self.messages:
94
+ if message:
95
+ ret += role + '\n' + message + self.sep
96
+ else:
97
+ ret += role + '\n'
98
+ return ret
99
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
100
+ ret = system_prompt
101
+ for role, message in self.messages:
102
+ if message:
103
+ ret += role + message + self.sep
104
+ else:
105
+ ret += role
106
+ return ret
107
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
108
+ seps = [self.sep, self.sep2]
109
+ ret = system_prompt
110
+ for i, (role, message) in enumerate(self.messages):
111
+ if message:
112
+ ret += role + message + seps[i % 2]
113
+ else:
114
+ ret += role
115
+ return ret
116
+ elif self.sep_style == SeparatorStyle.RWKV:
117
+ ret = system_prompt
118
+ for i, (role, message) in enumerate(self.messages):
119
+ if message:
120
+ ret += (
121
+ role
122
+ + ': '
123
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
124
+ )
125
+ ret += '\n\n'
126
+ else:
127
+ ret += role + ':'
128
+ return ret
129
+ elif self.sep_style == SeparatorStyle.LLAMA2:
130
+ seps = [self.sep, self.sep2]
131
+ if self.system_message:
132
+ ret = system_prompt
133
+ else:
134
+ ret = '[INST] '
135
+ for i, (role, message) in enumerate(self.messages):
136
+ tag = self.roles[i % 2]
137
+ if message:
138
+ if i == 0:
139
+ ret += message + ' '
140
+ else:
141
+ ret += tag + ' ' + message + seps[i % 2]
142
+ else:
143
+ ret += tag
144
+ return ret
145
+ elif self.sep_style == SeparatorStyle.CHATGLM:
146
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
147
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
148
+ round_add_n = 1 if self.name == 'chatglm2' else 0
149
+ if system_prompt:
150
+ ret = system_prompt + self.sep
151
+ else:
152
+ ret = ''
153
+
154
+ for i, (role, message) in enumerate(self.messages):
155
+ if i % 2 == 0:
156
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
157
+
158
+ if message:
159
+ ret += f'{role}:{message}{self.sep}'
160
+ else:
161
+ ret += f'{role}:'
162
+ return ret
163
+ elif self.sep_style == SeparatorStyle.CHATML:
164
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
165
+ for role, message in self.messages:
166
+ if message:
167
+ ret += role + '\n' + message + self.sep + '\n'
168
+ else:
169
+ ret += role + '\n'
170
+ return ret
171
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
172
+ ret = ''
173
+ if self.system_message:
174
+ ret += system_prompt
175
+ for role, message in self.messages:
176
+ if message:
177
+ ret += role + '\n' + ' ' + message
178
+ else:
179
+ ret += role
180
+ return ret
181
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
182
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
183
+ seps = [self.sep, self.sep2]
184
+ ret = system_prompt
185
+ for i, (role, message) in enumerate(self.messages):
186
+ # if i % 2 == 0:
187
+ # ret += "<s>"
188
+ if message:
189
+ ret += role + ':' + message + seps[i % 2] + '\n'
190
+ else:
191
+ ret += role + ':'
192
+ return ret
193
+ elif self.sep_style == SeparatorStyle.DOLLY:
194
+ seps = [self.sep, self.sep2]
195
+ ret = system_prompt
196
+ for i, (role, message) in enumerate(self.messages):
197
+ if message:
198
+ ret += role + ':\n' + message + seps[i % 2]
199
+ if i % 2 == 1:
200
+ ret += '\n\n'
201
+ else:
202
+ ret += role + ':\n'
203
+ return ret
204
+ elif self.sep_style == SeparatorStyle.PHOENIX:
205
+ ret = system_prompt
206
+ for role, message in self.messages:
207
+ if message:
208
+ ret += role + ': ' + '<s>' + message + '</s>'
209
+ else:
210
+ ret += role + ': ' + '<s>'
211
+ return ret
212
+ elif self.sep_style == SeparatorStyle.ROBIN:
213
+ ret = system_prompt + self.sep
214
+ for role, message in self.messages:
215
+ if message:
216
+ ret += role + ':\n' + message + self.sep
217
+ else:
218
+ ret += role + ':\n'
219
+ return ret
220
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
221
+ ret = ''
222
+ if self.system_message:
223
+ ret += system_prompt + self.sep
224
+ for role, message in self.messages:
225
+ if message:
226
+ ret += role + ': ' + message + self.sep
227
+ else:
228
+ ret += role + ':'
229
+
230
+ return ret
231
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
232
+ seps = [self.sep, self.sep2]
233
+ ret = self.system_message + seps[0]
234
+ for i, (role, message) in enumerate(self.messages):
235
+ if message:
236
+ ret += role + ': ' + message + seps[i % 2]
237
+ else:
238
+ ret += role + ':'
239
+ return ret
240
+ elif self.sep_style == SeparatorStyle.MPT:
241
+ ret = system_prompt + self.sep
242
+ for role, message in self.messages:
243
+ if message:
244
+ if type(message) is tuple:
245
+ message, _, _ = message
246
+ ret += role + message + self.sep
247
+ else:
248
+ ret += role
249
+ return ret
250
+ else:
251
+ raise ValueError(f'Invalid style: {self.sep_style}')
252
+
253
+ def set_system_message(self, system_message: str):
254
+ """Set the system message."""
255
+ self.system_message = system_message
256
+
257
+ def append_message(self, role: str, message: str):
258
+ """Append a new message."""
259
+ self.messages.append([role, message])
260
+
261
+ def update_last_message(self, message: str):
262
+ """Update the last output.
263
+
264
+ The last message is typically set to be None when constructing the prompt,
265
+ so we need to update it in-place after getting the response from a model.
266
+ """
267
+ self.messages[-1][1] = message
268
+
269
+ def to_gradio_chatbot(self):
270
+ """Convert the conversation to gradio chatbot format."""
271
+ ret = []
272
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
273
+ if i % 2 == 0:
274
+ ret.append([msg, None])
275
+ else:
276
+ ret[-1][-1] = msg
277
+ return ret
278
+
279
+ def to_openai_api_messages(self):
280
+ """Convert the conversation to OpenAI chat completion format."""
281
+ ret = [{'role': 'system', 'content': self.system_message}]
282
+
283
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
284
+ if i % 2 == 0:
285
+ ret.append({'role': 'user', 'content': msg})
286
+ else:
287
+ if msg is not None:
288
+ ret.append({'role': 'assistant', 'content': msg})
289
+ return ret
290
+
291
+ def copy(self):
292
+ return Conversation(
293
+ name=self.name,
294
+ system_template=self.system_template,
295
+ system_message=self.system_message,
296
+ roles=self.roles,
297
+ messages=[[x, y] for x, y in self.messages],
298
+ offset=self.offset,
299
+ sep_style=self.sep_style,
300
+ sep=self.sep,
301
+ sep2=self.sep2,
302
+ stop_str=self.stop_str,
303
+ stop_token_ids=self.stop_token_ids,
304
+ )
305
+
306
+ def dict(self):
307
+ return {
308
+ 'template_name': self.name,
309
+ 'system_message': self.system_message,
310
+ 'roles': self.roles,
311
+ 'messages': self.messages,
312
+ 'offset': self.offset,
313
+ }
314
+
315
+
316
+ # A global registry for all conversation templates
317
+ conv_templates: Dict[str, Conversation] = {}
318
+
319
+
320
+ def register_conv_template(template: Conversation, override: bool = False):
321
+ """Register a new conversation template."""
322
+ if not override:
323
+ assert (
324
+ template.name not in conv_templates
325
+ ), f'{template.name} has been registered.'
326
+
327
+ conv_templates[template.name] = template
328
+
329
+
330
+ def get_conv_template(name: str) -> Conversation:
331
+ """Get a conversation template."""
332
+ return conv_templates[name].copy()
333
+
334
+
335
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
336
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
337
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
338
+ # Therefore, they are completely equivalent during inference.
339
+ register_conv_template(
340
+ Conversation(
341
+ name='Hermes-2',
342
+ system_template='<|im_start|>system\n{system_message}',
343
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
344
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
345
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
346
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
347
+ sep_style=SeparatorStyle.MPT,
348
+ sep='<|im_end|>',
349
+ stop_str='<|endoftext|>',
350
+ )
351
+ )
352
+
353
+
354
+ register_conv_template(
355
+ Conversation(
356
+ name='internlm2-chat',
357
+ system_template='<|im_start|>system\n{system_message}',
358
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
359
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
360
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
361
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
362
+ sep_style=SeparatorStyle.MPT,
363
+ sep='<|im_end|>',
364
+ )
365
+ )
366
+
367
+
368
+ register_conv_template(
369
+ Conversation(
370
+ name='phi3-chat',
371
+ system_template='<|system|>\n{system_message}',
372
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
373
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
374
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
375
+ roles=('<|user|>\n', '<|assistant|>\n'),
376
+ sep_style=SeparatorStyle.MPT,
377
+ sep='<|end|>',
378
+ )
379
+ )
380
+
381
+
382
+ register_conv_template(
383
+ Conversation(
384
+ name='internvl2_5',
385
+ system_template='<|im_start|>system\n{system_message}',
386
+ system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
387
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
388
+ sep_style=SeparatorStyle.MPT,
389
+ sep='<|im_end|>\n',
390
+ )
391
+ )
OpenGVLab/InternVL2-4B/examples/image1.jpg ADDED
OpenGVLab/InternVL2-4B/examples/image2.jpg ADDED

Git LFS Details

  • SHA256: 08487494b8dc08d44bc36491adf3ab89ff30d13a3122da86f3cd67cad89eeee8
  • Pointer size: 131 Bytes
  • Size of remote file: 126 kB
OpenGVLab/InternVL2-4B/examples/red-panda.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d921c07bb97224d65a37801541d246067f0d506f08723ffa1ad85c217907ccb8
3
+ size 1867237
OpenGVLab/InternVL2-4B/generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.37.2",
4
+ "eos_token_id": [
5
+ 2,
6
+ 32000,
7
+ 32007
8
+ ]
9
+ }
OpenGVLab/InternVL2-4B/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d49faea2fab060381af9c6902a1ae9593797cffdc6317394b62b6bc97a80f35
3
+ size 4957392176
OpenGVLab/InternVL2-4B/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe85c0ab7ff42c3760870e1168f4de677f8177cbf4b43abde850e1d7ad16348a
3
+ size 3336385864
OpenGVLab/InternVL2-4B/model.safetensors.index.json ADDED
@@ -0,0 +1,548 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 8293711872
4
+ },
5
+ "weight_map": {
6
+ "language_model.lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "language_model.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "language_model.model.layers.0.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
11
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
12
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
13
+ "language_model.model.layers.0.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
14
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
15
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
16
+ "language_model.model.layers.1.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
17
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
18
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
19
+ "language_model.model.layers.1.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
20
+ "language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "language_model.model.layers.10.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
23
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
24
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
25
+ "language_model.model.layers.10.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
26
+ "language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
28
+ "language_model.model.layers.11.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
29
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
30
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
31
+ "language_model.model.layers.11.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
32
+ "language_model.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "language_model.model.layers.12.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
35
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
36
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
37
+ "language_model.model.layers.12.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
38
+ "language_model.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
40
+ "language_model.model.layers.13.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
41
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
42
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
43
+ "language_model.model.layers.13.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
44
+ "language_model.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "language_model.model.layers.14.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
47
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
49
+ "language_model.model.layers.14.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
50
+ "language_model.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
51
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
52
+ "language_model.model.layers.15.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
53
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
55
+ "language_model.model.layers.15.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
56
+ "language_model.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "language_model.model.layers.16.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
59
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
60
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
61
+ "language_model.model.layers.16.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
62
+ "language_model.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
63
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
64
+ "language_model.model.layers.17.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
65
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
66
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
67
+ "language_model.model.layers.17.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
68
+ "language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
69
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
70
+ "language_model.model.layers.18.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
71
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
72
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
73
+ "language_model.model.layers.18.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
74
+ "language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
75
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
76
+ "language_model.model.layers.19.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
77
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
78
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
79
+ "language_model.model.layers.19.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
80
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "language_model.model.layers.2.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
83
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
84
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
85
+ "language_model.model.layers.2.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
86
+ "language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
87
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
88
+ "language_model.model.layers.20.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
89
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
90
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
91
+ "language_model.model.layers.20.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
92
+ "language_model.model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
93
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
94
+ "language_model.model.layers.21.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
95
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
96
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
97
+ "language_model.model.layers.21.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
98
+ "language_model.model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
99
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
100
+ "language_model.model.layers.22.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
101
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
102
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
103
+ "language_model.model.layers.22.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
104
+ "language_model.model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
105
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
106
+ "language_model.model.layers.23.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
107
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
108
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
109
+ "language_model.model.layers.23.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
110
+ "language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
111
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
112
+ "language_model.model.layers.24.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
113
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
114
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
115
+ "language_model.model.layers.24.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
116
+ "language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
117
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
118
+ "language_model.model.layers.25.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
119
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
120
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
121
+ "language_model.model.layers.25.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
122
+ "language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
123
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
124
+ "language_model.model.layers.26.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
125
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
127
+ "language_model.model.layers.26.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
128
+ "language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
129
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
130
+ "language_model.model.layers.27.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
131
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
132
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
133
+ "language_model.model.layers.27.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
134
+ "language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
135
+ "language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
136
+ "language_model.model.layers.28.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
137
+ "language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
138
+ "language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
139
+ "language_model.model.layers.28.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
140
+ "language_model.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
141
+ "language_model.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
142
+ "language_model.model.layers.29.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
143
+ "language_model.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
145
+ "language_model.model.layers.29.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
146
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
147
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
148
+ "language_model.model.layers.3.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
149
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
150
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
151
+ "language_model.model.layers.3.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
152
+ "language_model.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
153
+ "language_model.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
154
+ "language_model.model.layers.30.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
155
+ "language_model.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
156
+ "language_model.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
157
+ "language_model.model.layers.30.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
158
+ "language_model.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
159
+ "language_model.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
160
+ "language_model.model.layers.31.mlp.gate_up_proj.weight": "model-00002-of-00002.safetensors",
161
+ "language_model.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
162
+ "language_model.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
163
+ "language_model.model.layers.31.self_attn.qkv_proj.weight": "model-00002-of-00002.safetensors",
164
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "language_model.model.layers.4.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
167
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
168
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
169
+ "language_model.model.layers.4.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
170
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
171
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
172
+ "language_model.model.layers.5.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
173
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
174
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
175
+ "language_model.model.layers.5.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
176
+ "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
177
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
178
+ "language_model.model.layers.6.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
179
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
180
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
181
+ "language_model.model.layers.6.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
182
+ "language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
183
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
184
+ "language_model.model.layers.7.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
185
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
186
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
187
+ "language_model.model.layers.7.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
188
+ "language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
189
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
190
+ "language_model.model.layers.8.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
191
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
192
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
193
+ "language_model.model.layers.8.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
194
+ "language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
195
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
196
+ "language_model.model.layers.9.mlp.gate_up_proj.weight": "model-00001-of-00002.safetensors",
197
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
198
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
199
+ "language_model.model.layers.9.self_attn.qkv_proj.weight": "model-00001-of-00002.safetensors",
200
+ "language_model.model.norm.weight": "model-00002-of-00002.safetensors",
201
+ "mlp1.0.bias": "model-00002-of-00002.safetensors",
202
+ "mlp1.0.weight": "model-00002-of-00002.safetensors",
203
+ "mlp1.1.bias": "model-00002-of-00002.safetensors",
204
+ "mlp1.1.weight": "model-00002-of-00002.safetensors",
205
+ "mlp1.3.bias": "model-00002-of-00002.safetensors",
206
+ "mlp1.3.weight": "model-00002-of-00002.safetensors",
207
+ "vision_model.embeddings.class_embedding": "model-00001-of-00002.safetensors",
208
+ "vision_model.embeddings.patch_embedding.bias": "model-00001-of-00002.safetensors",
209
+ "vision_model.embeddings.patch_embedding.weight": "model-00001-of-00002.safetensors",
210
+ "vision_model.embeddings.position_embedding": "model-00001-of-00002.safetensors",
211
+ "vision_model.encoder.layers.0.attn.proj.bias": "model-00001-of-00002.safetensors",
212
+ "vision_model.encoder.layers.0.attn.proj.weight": "model-00001-of-00002.safetensors",
213
+ "vision_model.encoder.layers.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
214
+ "vision_model.encoder.layers.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
215
+ "vision_model.encoder.layers.0.ls1": "model-00001-of-00002.safetensors",
216
+ "vision_model.encoder.layers.0.ls2": "model-00001-of-00002.safetensors",
217
+ "vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
218
+ "vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
219
+ "vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
220
+ "vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
221
+ "vision_model.encoder.layers.0.norm1.bias": "model-00001-of-00002.safetensors",
222
+ "vision_model.encoder.layers.0.norm1.weight": "model-00001-of-00002.safetensors",
223
+ "vision_model.encoder.layers.0.norm2.bias": "model-00001-of-00002.safetensors",
224
+ "vision_model.encoder.layers.0.norm2.weight": "model-00001-of-00002.safetensors",
225
+ "vision_model.encoder.layers.1.attn.proj.bias": "model-00001-of-00002.safetensors",
226
+ "vision_model.encoder.layers.1.attn.proj.weight": "model-00001-of-00002.safetensors",
227
+ "vision_model.encoder.layers.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
228
+ "vision_model.encoder.layers.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
229
+ "vision_model.encoder.layers.1.ls1": "model-00001-of-00002.safetensors",
230
+ "vision_model.encoder.layers.1.ls2": "model-00001-of-00002.safetensors",
231
+ "vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
232
+ "vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
233
+ "vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
234
+ "vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
235
+ "vision_model.encoder.layers.1.norm1.bias": "model-00001-of-00002.safetensors",
236
+ "vision_model.encoder.layers.1.norm1.weight": "model-00001-of-00002.safetensors",
237
+ "vision_model.encoder.layers.1.norm2.bias": "model-00001-of-00002.safetensors",
238
+ "vision_model.encoder.layers.1.norm2.weight": "model-00001-of-00002.safetensors",
239
+ "vision_model.encoder.layers.10.attn.proj.bias": "model-00001-of-00002.safetensors",
240
+ "vision_model.encoder.layers.10.attn.proj.weight": "model-00001-of-00002.safetensors",
241
+ "vision_model.encoder.layers.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
242
+ "vision_model.encoder.layers.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
243
+ "vision_model.encoder.layers.10.ls1": "model-00001-of-00002.safetensors",
244
+ "vision_model.encoder.layers.10.ls2": "model-00001-of-00002.safetensors",
245
+ "vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
246
+ "vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
247
+ "vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
248
+ "vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
249
+ "vision_model.encoder.layers.10.norm1.bias": "model-00001-of-00002.safetensors",
250
+ "vision_model.encoder.layers.10.norm1.weight": "model-00001-of-00002.safetensors",
251
+ "vision_model.encoder.layers.10.norm2.bias": "model-00001-of-00002.safetensors",
252
+ "vision_model.encoder.layers.10.norm2.weight": "model-00001-of-00002.safetensors",
253
+ "vision_model.encoder.layers.11.attn.proj.bias": "model-00001-of-00002.safetensors",
254
+ "vision_model.encoder.layers.11.attn.proj.weight": "model-00001-of-00002.safetensors",
255
+ "vision_model.encoder.layers.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
256
+ "vision_model.encoder.layers.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
257
+ "vision_model.encoder.layers.11.ls1": "model-00001-of-00002.safetensors",
258
+ "vision_model.encoder.layers.11.ls2": "model-00001-of-00002.safetensors",
259
+ "vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
260
+ "vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
261
+ "vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
262
+ "vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
263
+ "vision_model.encoder.layers.11.norm1.bias": "model-00001-of-00002.safetensors",
264
+ "vision_model.encoder.layers.11.norm1.weight": "model-00001-of-00002.safetensors",
265
+ "vision_model.encoder.layers.11.norm2.bias": "model-00001-of-00002.safetensors",
266
+ "vision_model.encoder.layers.11.norm2.weight": "model-00001-of-00002.safetensors",
267
+ "vision_model.encoder.layers.12.attn.proj.bias": "model-00001-of-00002.safetensors",
268
+ "vision_model.encoder.layers.12.attn.proj.weight": "model-00001-of-00002.safetensors",
269
+ "vision_model.encoder.layers.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
270
+ "vision_model.encoder.layers.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
271
+ "vision_model.encoder.layers.12.ls1": "model-00001-of-00002.safetensors",
272
+ "vision_model.encoder.layers.12.ls2": "model-00001-of-00002.safetensors",
273
+ "vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
274
+ "vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
275
+ "vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
276
+ "vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
277
+ "vision_model.encoder.layers.12.norm1.bias": "model-00001-of-00002.safetensors",
278
+ "vision_model.encoder.layers.12.norm1.weight": "model-00001-of-00002.safetensors",
279
+ "vision_model.encoder.layers.12.norm2.bias": "model-00001-of-00002.safetensors",
280
+ "vision_model.encoder.layers.12.norm2.weight": "model-00001-of-00002.safetensors",
281
+ "vision_model.encoder.layers.13.attn.proj.bias": "model-00001-of-00002.safetensors",
282
+ "vision_model.encoder.layers.13.attn.proj.weight": "model-00001-of-00002.safetensors",
283
+ "vision_model.encoder.layers.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
284
+ "vision_model.encoder.layers.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
285
+ "vision_model.encoder.layers.13.ls1": "model-00001-of-00002.safetensors",
286
+ "vision_model.encoder.layers.13.ls2": "model-00001-of-00002.safetensors",
287
+ "vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
288
+ "vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
289
+ "vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
290
+ "vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
291
+ "vision_model.encoder.layers.13.norm1.bias": "model-00001-of-00002.safetensors",
292
+ "vision_model.encoder.layers.13.norm1.weight": "model-00001-of-00002.safetensors",
293
+ "vision_model.encoder.layers.13.norm2.bias": "model-00001-of-00002.safetensors",
294
+ "vision_model.encoder.layers.13.norm2.weight": "model-00001-of-00002.safetensors",
295
+ "vision_model.encoder.layers.14.attn.proj.bias": "model-00001-of-00002.safetensors",
296
+ "vision_model.encoder.layers.14.attn.proj.weight": "model-00001-of-00002.safetensors",
297
+ "vision_model.encoder.layers.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
298
+ "vision_model.encoder.layers.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
299
+ "vision_model.encoder.layers.14.ls1": "model-00001-of-00002.safetensors",
300
+ "vision_model.encoder.layers.14.ls2": "model-00001-of-00002.safetensors",
301
+ "vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
302
+ "vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
303
+ "vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
304
+ "vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
305
+ "vision_model.encoder.layers.14.norm1.bias": "model-00001-of-00002.safetensors",
306
+ "vision_model.encoder.layers.14.norm1.weight": "model-00001-of-00002.safetensors",
307
+ "vision_model.encoder.layers.14.norm2.bias": "model-00001-of-00002.safetensors",
308
+ "vision_model.encoder.layers.14.norm2.weight": "model-00001-of-00002.safetensors",
309
+ "vision_model.encoder.layers.15.attn.proj.bias": "model-00001-of-00002.safetensors",
310
+ "vision_model.encoder.layers.15.attn.proj.weight": "model-00001-of-00002.safetensors",
311
+ "vision_model.encoder.layers.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
312
+ "vision_model.encoder.layers.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
313
+ "vision_model.encoder.layers.15.ls1": "model-00001-of-00002.safetensors",
314
+ "vision_model.encoder.layers.15.ls2": "model-00001-of-00002.safetensors",
315
+ "vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
316
+ "vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
317
+ "vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
318
+ "vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
319
+ "vision_model.encoder.layers.15.norm1.bias": "model-00001-of-00002.safetensors",
320
+ "vision_model.encoder.layers.15.norm1.weight": "model-00001-of-00002.safetensors",
321
+ "vision_model.encoder.layers.15.norm2.bias": "model-00001-of-00002.safetensors",
322
+ "vision_model.encoder.layers.15.norm2.weight": "model-00001-of-00002.safetensors",
323
+ "vision_model.encoder.layers.16.attn.proj.bias": "model-00001-of-00002.safetensors",
324
+ "vision_model.encoder.layers.16.attn.proj.weight": "model-00001-of-00002.safetensors",
325
+ "vision_model.encoder.layers.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
326
+ "vision_model.encoder.layers.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
327
+ "vision_model.encoder.layers.16.ls1": "model-00001-of-00002.safetensors",
328
+ "vision_model.encoder.layers.16.ls2": "model-00001-of-00002.safetensors",
329
+ "vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
330
+ "vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
331
+ "vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
332
+ "vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
333
+ "vision_model.encoder.layers.16.norm1.bias": "model-00001-of-00002.safetensors",
334
+ "vision_model.encoder.layers.16.norm1.weight": "model-00001-of-00002.safetensors",
335
+ "vision_model.encoder.layers.16.norm2.bias": "model-00001-of-00002.safetensors",
336
+ "vision_model.encoder.layers.16.norm2.weight": "model-00001-of-00002.safetensors",
337
+ "vision_model.encoder.layers.17.attn.proj.bias": "model-00001-of-00002.safetensors",
338
+ "vision_model.encoder.layers.17.attn.proj.weight": "model-00001-of-00002.safetensors",
339
+ "vision_model.encoder.layers.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
340
+ "vision_model.encoder.layers.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
341
+ "vision_model.encoder.layers.17.ls1": "model-00001-of-00002.safetensors",
342
+ "vision_model.encoder.layers.17.ls2": "model-00001-of-00002.safetensors",
343
+ "vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
344
+ "vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
345
+ "vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
346
+ "vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
347
+ "vision_model.encoder.layers.17.norm1.bias": "model-00001-of-00002.safetensors",
348
+ "vision_model.encoder.layers.17.norm1.weight": "model-00001-of-00002.safetensors",
349
+ "vision_model.encoder.layers.17.norm2.bias": "model-00001-of-00002.safetensors",
350
+ "vision_model.encoder.layers.17.norm2.weight": "model-00001-of-00002.safetensors",
351
+ "vision_model.encoder.layers.18.attn.proj.bias": "model-00001-of-00002.safetensors",
352
+ "vision_model.encoder.layers.18.attn.proj.weight": "model-00001-of-00002.safetensors",
353
+ "vision_model.encoder.layers.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
354
+ "vision_model.encoder.layers.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
355
+ "vision_model.encoder.layers.18.ls1": "model-00001-of-00002.safetensors",
356
+ "vision_model.encoder.layers.18.ls2": "model-00001-of-00002.safetensors",
357
+ "vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
358
+ "vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
359
+ "vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
360
+ "vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
361
+ "vision_model.encoder.layers.18.norm1.bias": "model-00001-of-00002.safetensors",
362
+ "vision_model.encoder.layers.18.norm1.weight": "model-00001-of-00002.safetensors",
363
+ "vision_model.encoder.layers.18.norm2.bias": "model-00001-of-00002.safetensors",
364
+ "vision_model.encoder.layers.18.norm2.weight": "model-00001-of-00002.safetensors",
365
+ "vision_model.encoder.layers.19.attn.proj.bias": "model-00001-of-00002.safetensors",
366
+ "vision_model.encoder.layers.19.attn.proj.weight": "model-00001-of-00002.safetensors",
367
+ "vision_model.encoder.layers.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
368
+ "vision_model.encoder.layers.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
369
+ "vision_model.encoder.layers.19.ls1": "model-00001-of-00002.safetensors",
370
+ "vision_model.encoder.layers.19.ls2": "model-00001-of-00002.safetensors",
371
+ "vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
372
+ "vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
373
+ "vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
374
+ "vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
375
+ "vision_model.encoder.layers.19.norm1.bias": "model-00001-of-00002.safetensors",
376
+ "vision_model.encoder.layers.19.norm1.weight": "model-00001-of-00002.safetensors",
377
+ "vision_model.encoder.layers.19.norm2.bias": "model-00001-of-00002.safetensors",
378
+ "vision_model.encoder.layers.19.norm2.weight": "model-00001-of-00002.safetensors",
379
+ "vision_model.encoder.layers.2.attn.proj.bias": "model-00001-of-00002.safetensors",
380
+ "vision_model.encoder.layers.2.attn.proj.weight": "model-00001-of-00002.safetensors",
381
+ "vision_model.encoder.layers.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
382
+ "vision_model.encoder.layers.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
383
+ "vision_model.encoder.layers.2.ls1": "model-00001-of-00002.safetensors",
384
+ "vision_model.encoder.layers.2.ls2": "model-00001-of-00002.safetensors",
385
+ "vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
386
+ "vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
387
+ "vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
388
+ "vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
389
+ "vision_model.encoder.layers.2.norm1.bias": "model-00001-of-00002.safetensors",
390
+ "vision_model.encoder.layers.2.norm1.weight": "model-00001-of-00002.safetensors",
391
+ "vision_model.encoder.layers.2.norm2.bias": "model-00001-of-00002.safetensors",
392
+ "vision_model.encoder.layers.2.norm2.weight": "model-00001-of-00002.safetensors",
393
+ "vision_model.encoder.layers.20.attn.proj.bias": "model-00001-of-00002.safetensors",
394
+ "vision_model.encoder.layers.20.attn.proj.weight": "model-00001-of-00002.safetensors",
395
+ "vision_model.encoder.layers.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
396
+ "vision_model.encoder.layers.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
397
+ "vision_model.encoder.layers.20.ls1": "model-00001-of-00002.safetensors",
398
+ "vision_model.encoder.layers.20.ls2": "model-00001-of-00002.safetensors",
399
+ "vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
400
+ "vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
401
+ "vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
402
+ "vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
403
+ "vision_model.encoder.layers.20.norm1.bias": "model-00001-of-00002.safetensors",
404
+ "vision_model.encoder.layers.20.norm1.weight": "model-00001-of-00002.safetensors",
405
+ "vision_model.encoder.layers.20.norm2.bias": "model-00001-of-00002.safetensors",
406
+ "vision_model.encoder.layers.20.norm2.weight": "model-00001-of-00002.safetensors",
407
+ "vision_model.encoder.layers.21.attn.proj.bias": "model-00001-of-00002.safetensors",
408
+ "vision_model.encoder.layers.21.attn.proj.weight": "model-00001-of-00002.safetensors",
409
+ "vision_model.encoder.layers.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
410
+ "vision_model.encoder.layers.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
411
+ "vision_model.encoder.layers.21.ls1": "model-00001-of-00002.safetensors",
412
+ "vision_model.encoder.layers.21.ls2": "model-00001-of-00002.safetensors",
413
+ "vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
414
+ "vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
415
+ "vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
416
+ "vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
417
+ "vision_model.encoder.layers.21.norm1.bias": "model-00001-of-00002.safetensors",
418
+ "vision_model.encoder.layers.21.norm1.weight": "model-00001-of-00002.safetensors",
419
+ "vision_model.encoder.layers.21.norm2.bias": "model-00001-of-00002.safetensors",
420
+ "vision_model.encoder.layers.21.norm2.weight": "model-00001-of-00002.safetensors",
421
+ "vision_model.encoder.layers.22.attn.proj.bias": "model-00001-of-00002.safetensors",
422
+ "vision_model.encoder.layers.22.attn.proj.weight": "model-00001-of-00002.safetensors",
423
+ "vision_model.encoder.layers.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
424
+ "vision_model.encoder.layers.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
425
+ "vision_model.encoder.layers.22.ls1": "model-00001-of-00002.safetensors",
426
+ "vision_model.encoder.layers.22.ls2": "model-00001-of-00002.safetensors",
427
+ "vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
428
+ "vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
429
+ "vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
430
+ "vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
431
+ "vision_model.encoder.layers.22.norm1.bias": "model-00001-of-00002.safetensors",
432
+ "vision_model.encoder.layers.22.norm1.weight": "model-00001-of-00002.safetensors",
433
+ "vision_model.encoder.layers.22.norm2.bias": "model-00001-of-00002.safetensors",
434
+ "vision_model.encoder.layers.22.norm2.weight": "model-00001-of-00002.safetensors",
435
+ "vision_model.encoder.layers.23.attn.proj.bias": "model-00001-of-00002.safetensors",
436
+ "vision_model.encoder.layers.23.attn.proj.weight": "model-00001-of-00002.safetensors",
437
+ "vision_model.encoder.layers.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
438
+ "vision_model.encoder.layers.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
439
+ "vision_model.encoder.layers.23.ls1": "model-00001-of-00002.safetensors",
440
+ "vision_model.encoder.layers.23.ls2": "model-00001-of-00002.safetensors",
441
+ "vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
442
+ "vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
443
+ "vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
444
+ "vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
445
+ "vision_model.encoder.layers.23.norm1.bias": "model-00001-of-00002.safetensors",
446
+ "vision_model.encoder.layers.23.norm1.weight": "model-00001-of-00002.safetensors",
447
+ "vision_model.encoder.layers.23.norm2.bias": "model-00001-of-00002.safetensors",
448
+ "vision_model.encoder.layers.23.norm2.weight": "model-00001-of-00002.safetensors",
449
+ "vision_model.encoder.layers.3.attn.proj.bias": "model-00001-of-00002.safetensors",
450
+ "vision_model.encoder.layers.3.attn.proj.weight": "model-00001-of-00002.safetensors",
451
+ "vision_model.encoder.layers.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
452
+ "vision_model.encoder.layers.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
453
+ "vision_model.encoder.layers.3.ls1": "model-00001-of-00002.safetensors",
454
+ "vision_model.encoder.layers.3.ls2": "model-00001-of-00002.safetensors",
455
+ "vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
456
+ "vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
457
+ "vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
458
+ "vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
459
+ "vision_model.encoder.layers.3.norm1.bias": "model-00001-of-00002.safetensors",
460
+ "vision_model.encoder.layers.3.norm1.weight": "model-00001-of-00002.safetensors",
461
+ "vision_model.encoder.layers.3.norm2.bias": "model-00001-of-00002.safetensors",
462
+ "vision_model.encoder.layers.3.norm2.weight": "model-00001-of-00002.safetensors",
463
+ "vision_model.encoder.layers.4.attn.proj.bias": "model-00001-of-00002.safetensors",
464
+ "vision_model.encoder.layers.4.attn.proj.weight": "model-00001-of-00002.safetensors",
465
+ "vision_model.encoder.layers.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
466
+ "vision_model.encoder.layers.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
467
+ "vision_model.encoder.layers.4.ls1": "model-00001-of-00002.safetensors",
468
+ "vision_model.encoder.layers.4.ls2": "model-00001-of-00002.safetensors",
469
+ "vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
470
+ "vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
471
+ "vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
472
+ "vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
473
+ "vision_model.encoder.layers.4.norm1.bias": "model-00001-of-00002.safetensors",
474
+ "vision_model.encoder.layers.4.norm1.weight": "model-00001-of-00002.safetensors",
475
+ "vision_model.encoder.layers.4.norm2.bias": "model-00001-of-00002.safetensors",
476
+ "vision_model.encoder.layers.4.norm2.weight": "model-00001-of-00002.safetensors",
477
+ "vision_model.encoder.layers.5.attn.proj.bias": "model-00001-of-00002.safetensors",
478
+ "vision_model.encoder.layers.5.attn.proj.weight": "model-00001-of-00002.safetensors",
479
+ "vision_model.encoder.layers.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
480
+ "vision_model.encoder.layers.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
481
+ "vision_model.encoder.layers.5.ls1": "model-00001-of-00002.safetensors",
482
+ "vision_model.encoder.layers.5.ls2": "model-00001-of-00002.safetensors",
483
+ "vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
484
+ "vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
485
+ "vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
486
+ "vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
487
+ "vision_model.encoder.layers.5.norm1.bias": "model-00001-of-00002.safetensors",
488
+ "vision_model.encoder.layers.5.norm1.weight": "model-00001-of-00002.safetensors",
489
+ "vision_model.encoder.layers.5.norm2.bias": "model-00001-of-00002.safetensors",
490
+ "vision_model.encoder.layers.5.norm2.weight": "model-00001-of-00002.safetensors",
491
+ "vision_model.encoder.layers.6.attn.proj.bias": "model-00001-of-00002.safetensors",
492
+ "vision_model.encoder.layers.6.attn.proj.weight": "model-00001-of-00002.safetensors",
493
+ "vision_model.encoder.layers.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
494
+ "vision_model.encoder.layers.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
495
+ "vision_model.encoder.layers.6.ls1": "model-00001-of-00002.safetensors",
496
+ "vision_model.encoder.layers.6.ls2": "model-00001-of-00002.safetensors",
497
+ "vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
498
+ "vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
499
+ "vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
500
+ "vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
501
+ "vision_model.encoder.layers.6.norm1.bias": "model-00001-of-00002.safetensors",
502
+ "vision_model.encoder.layers.6.norm1.weight": "model-00001-of-00002.safetensors",
503
+ "vision_model.encoder.layers.6.norm2.bias": "model-00001-of-00002.safetensors",
504
+ "vision_model.encoder.layers.6.norm2.weight": "model-00001-of-00002.safetensors",
505
+ "vision_model.encoder.layers.7.attn.proj.bias": "model-00001-of-00002.safetensors",
506
+ "vision_model.encoder.layers.7.attn.proj.weight": "model-00001-of-00002.safetensors",
507
+ "vision_model.encoder.layers.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
508
+ "vision_model.encoder.layers.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
509
+ "vision_model.encoder.layers.7.ls1": "model-00001-of-00002.safetensors",
510
+ "vision_model.encoder.layers.7.ls2": "model-00001-of-00002.safetensors",
511
+ "vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
512
+ "vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
513
+ "vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
514
+ "vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
515
+ "vision_model.encoder.layers.7.norm1.bias": "model-00001-of-00002.safetensors",
516
+ "vision_model.encoder.layers.7.norm1.weight": "model-00001-of-00002.safetensors",
517
+ "vision_model.encoder.layers.7.norm2.bias": "model-00001-of-00002.safetensors",
518
+ "vision_model.encoder.layers.7.norm2.weight": "model-00001-of-00002.safetensors",
519
+ "vision_model.encoder.layers.8.attn.proj.bias": "model-00001-of-00002.safetensors",
520
+ "vision_model.encoder.layers.8.attn.proj.weight": "model-00001-of-00002.safetensors",
521
+ "vision_model.encoder.layers.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
522
+ "vision_model.encoder.layers.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
523
+ "vision_model.encoder.layers.8.ls1": "model-00001-of-00002.safetensors",
524
+ "vision_model.encoder.layers.8.ls2": "model-00001-of-00002.safetensors",
525
+ "vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
526
+ "vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
527
+ "vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
528
+ "vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
529
+ "vision_model.encoder.layers.8.norm1.bias": "model-00001-of-00002.safetensors",
530
+ "vision_model.encoder.layers.8.norm1.weight": "model-00001-of-00002.safetensors",
531
+ "vision_model.encoder.layers.8.norm2.bias": "model-00001-of-00002.safetensors",
532
+ "vision_model.encoder.layers.8.norm2.weight": "model-00001-of-00002.safetensors",
533
+ "vision_model.encoder.layers.9.attn.proj.bias": "model-00001-of-00002.safetensors",
534
+ "vision_model.encoder.layers.9.attn.proj.weight": "model-00001-of-00002.safetensors",
535
+ "vision_model.encoder.layers.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
536
+ "vision_model.encoder.layers.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
537
+ "vision_model.encoder.layers.9.ls1": "model-00001-of-00002.safetensors",
538
+ "vision_model.encoder.layers.9.ls2": "model-00001-of-00002.safetensors",
539
+ "vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
540
+ "vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
541
+ "vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
542
+ "vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
543
+ "vision_model.encoder.layers.9.norm1.bias": "model-00001-of-00002.safetensors",
544
+ "vision_model.encoder.layers.9.norm1.weight": "model-00001-of-00002.safetensors",
545
+ "vision_model.encoder.layers.9.norm2.bias": "model-00001-of-00002.safetensors",
546
+ "vision_model.encoder.layers.9.norm2.weight": "model-00001-of-00002.safetensors"
547
+ }
548
+ }
OpenGVLab/InternVL2-4B/modeling_intern_vit.py ADDED
@@ -0,0 +1,430 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ from typing import Optional, Tuple, Union
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint
12
+ from einops import rearrange
13
+ from timm.models.layers import DropPath
14
+ from torch import nn
15
+ from transformers.activations import ACT2FN
16
+ from transformers.modeling_outputs import (BaseModelOutput,
17
+ BaseModelOutputWithPooling)
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.utils import logging
20
+
21
+ from .configuration_intern_vit import InternVisionConfig
22
+
23
+ try:
24
+ from flash_attn.bert_padding import pad_input, unpad_input
25
+ from flash_attn.flash_attn_interface import \
26
+ flash_attn_varlen_qkvpacked_func
27
+ has_flash_attn = True
28
+ except:
29
+ print('FlashAttention2 is not installed.')
30
+ has_flash_attn = False
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+
35
+ class FlashAttention(nn.Module):
36
+ """Implement the scaled dot product attention with softmax.
37
+ Arguments
38
+ ---------
39
+ softmax_scale: The temperature to use for the softmax attention.
40
+ (default: 1/sqrt(d_keys) where d_keys is computed at
41
+ runtime)
42
+ attention_dropout: The dropout rate to apply to the attention
43
+ (default: 0.0)
44
+ """
45
+
46
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
47
+ super().__init__()
48
+ self.softmax_scale = softmax_scale
49
+ self.dropout_p = attention_dropout
50
+
51
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
52
+ max_s=None, need_weights=False):
53
+ """Implements the multihead softmax attention.
54
+ Arguments
55
+ ---------
56
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
57
+ if unpadded: (nnz, 3, h, d)
58
+ key_padding_mask: a bool tensor of shape (B, S)
59
+ """
60
+ assert not need_weights
61
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
62
+ assert qkv.is_cuda
63
+
64
+ if cu_seqlens is None:
65
+ batch_size = qkv.shape[0]
66
+ seqlen = qkv.shape[1]
67
+ if key_padding_mask is None:
68
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
69
+ max_s = seqlen
70
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
71
+ device=qkv.device)
72
+ output = flash_attn_varlen_qkvpacked_func(
73
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
74
+ softmax_scale=self.softmax_scale, causal=causal
75
+ )
76
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
77
+ else:
78
+ nheads = qkv.shape[-2]
79
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
80
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
81
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
82
+ output_unpad = flash_attn_varlen_qkvpacked_func(
83
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
84
+ softmax_scale=self.softmax_scale, causal=causal
85
+ )
86
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
87
+ indices, batch_size, seqlen),
88
+ 'b s (h d) -> b s h d', h=nheads)
89
+ else:
90
+ assert max_s is not None
91
+ output = flash_attn_varlen_qkvpacked_func(
92
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
93
+ softmax_scale=self.softmax_scale, causal=causal
94
+ )
95
+
96
+ return output, None
97
+
98
+
99
+ class InternRMSNorm(nn.Module):
100
+ def __init__(self, hidden_size, eps=1e-6):
101
+ super().__init__()
102
+ self.weight = nn.Parameter(torch.ones(hidden_size))
103
+ self.variance_epsilon = eps
104
+
105
+ def forward(self, hidden_states):
106
+ input_dtype = hidden_states.dtype
107
+ hidden_states = hidden_states.to(torch.float32)
108
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
109
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
110
+ return self.weight * hidden_states.to(input_dtype)
111
+
112
+
113
+ try:
114
+ from apex.normalization import FusedRMSNorm
115
+
116
+ InternRMSNorm = FusedRMSNorm # noqa
117
+
118
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
119
+ except ImportError:
120
+ # using the normal InternRMSNorm
121
+ pass
122
+ except Exception:
123
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
124
+ pass
125
+
126
+
127
+ NORM2FN = {
128
+ 'rms_norm': InternRMSNorm,
129
+ 'layer_norm': nn.LayerNorm,
130
+ }
131
+
132
+
133
+ class InternVisionEmbeddings(nn.Module):
134
+ def __init__(self, config: InternVisionConfig):
135
+ super().__init__()
136
+ self.config = config
137
+ self.embed_dim = config.hidden_size
138
+ self.image_size = config.image_size
139
+ self.patch_size = config.patch_size
140
+
141
+ self.class_embedding = nn.Parameter(
142
+ torch.randn(1, 1, self.embed_dim),
143
+ )
144
+
145
+ self.patch_embedding = nn.Conv2d(
146
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
147
+ )
148
+
149
+ self.num_patches = (self.image_size // self.patch_size) ** 2
150
+ self.num_positions = self.num_patches + 1
151
+
152
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
153
+
154
+ def _get_pos_embed(self, pos_embed, H, W):
155
+ target_dtype = pos_embed.dtype
156
+ pos_embed = pos_embed.float().reshape(
157
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
158
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
159
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
160
+ return pos_embed
161
+
162
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
163
+ target_dtype = self.patch_embedding.weight.dtype
164
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
165
+ batch_size, _, height, width = patch_embeds.shape
166
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
167
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
168
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
169
+ position_embedding = torch.cat([
170
+ self.position_embedding[:, :1, :],
171
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
172
+ ], dim=1)
173
+ embeddings = embeddings + position_embedding.to(target_dtype)
174
+ return embeddings
175
+
176
+
177
+ class InternAttention(nn.Module):
178
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
179
+
180
+ def __init__(self, config: InternVisionConfig):
181
+ super().__init__()
182
+ self.config = config
183
+ self.embed_dim = config.hidden_size
184
+ self.num_heads = config.num_attention_heads
185
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
186
+ if config.use_flash_attn and not has_flash_attn:
187
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
188
+ self.head_dim = self.embed_dim // self.num_heads
189
+ if self.head_dim * self.num_heads != self.embed_dim:
190
+ raise ValueError(
191
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
192
+ f' {self.num_heads}).'
193
+ )
194
+
195
+ self.scale = self.head_dim ** -0.5
196
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
197
+ self.attn_drop = nn.Dropout(config.attention_dropout)
198
+ self.proj_drop = nn.Dropout(config.dropout)
199
+
200
+ self.qk_normalization = config.qk_normalization
201
+
202
+ if self.qk_normalization:
203
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
205
+
206
+ if self.use_flash_attn:
207
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
208
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
209
+
210
+ def _naive_attn(self, x):
211
+ B, N, C = x.shape
212
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
213
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
214
+
215
+ if self.qk_normalization:
216
+ B_, H_, N_, D_ = q.shape
217
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
219
+
220
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
221
+ attn = attn.softmax(dim=-1)
222
+ attn = self.attn_drop(attn)
223
+
224
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
225
+ x = self.proj(x)
226
+ x = self.proj_drop(x)
227
+ return x
228
+
229
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
230
+ qkv = self.qkv(x)
231
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
232
+
233
+ if self.qk_normalization:
234
+ q, k, v = qkv.unbind(2)
235
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
236
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
237
+ qkv = torch.stack([q, k, v], dim=2)
238
+
239
+ context, _ = self.inner_attn(
240
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
241
+ )
242
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
243
+ outs = self.proj_drop(outs)
244
+ return outs
245
+
246
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
247
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
248
+ return x
249
+
250
+
251
+ class InternMLP(nn.Module):
252
+ def __init__(self, config: InternVisionConfig):
253
+ super().__init__()
254
+ self.config = config
255
+ self.act = ACT2FN[config.hidden_act]
256
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
257
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
258
+
259
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
260
+ hidden_states = self.fc1(hidden_states)
261
+ hidden_states = self.act(hidden_states)
262
+ hidden_states = self.fc2(hidden_states)
263
+ return hidden_states
264
+
265
+
266
+ class InternVisionEncoderLayer(nn.Module):
267
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
268
+ super().__init__()
269
+ self.embed_dim = config.hidden_size
270
+ self.intermediate_size = config.intermediate_size
271
+ self.norm_type = config.norm_type
272
+
273
+ self.attn = InternAttention(config)
274
+ self.mlp = InternMLP(config)
275
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
277
+
278
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
280
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
282
+
283
+ def forward(
284
+ self,
285
+ hidden_states: torch.Tensor,
286
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
287
+ """
288
+ Args:
289
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
290
+ """
291
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
292
+
293
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
294
+
295
+ return hidden_states
296
+
297
+
298
+ class InternVisionEncoder(nn.Module):
299
+ """
300
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
301
+ [`InternEncoderLayer`].
302
+
303
+ Args:
304
+ config (`InternConfig`):
305
+ The corresponding vision configuration for the `InternEncoder`.
306
+ """
307
+
308
+ def __init__(self, config: InternVisionConfig):
309
+ super().__init__()
310
+ self.config = config
311
+ # stochastic depth decay rule
312
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
313
+ self.layers = nn.ModuleList([
314
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
315
+ self.gradient_checkpointing = True
316
+
317
+ def forward(
318
+ self,
319
+ inputs_embeds,
320
+ output_hidden_states: Optional[bool] = None,
321
+ return_dict: Optional[bool] = None,
322
+ ) -> Union[Tuple, BaseModelOutput]:
323
+ r"""
324
+ Args:
325
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
326
+ Embedded representation of the inputs. Should be float, not int tokens.
327
+ output_hidden_states (`bool`, *optional*):
328
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
329
+ for more detail.
330
+ return_dict (`bool`, *optional*):
331
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
332
+ """
333
+ output_hidden_states = (
334
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
335
+ )
336
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
337
+
338
+ encoder_states = () if output_hidden_states else None
339
+ hidden_states = inputs_embeds
340
+
341
+ for idx, encoder_layer in enumerate(self.layers):
342
+ if output_hidden_states:
343
+ encoder_states = encoder_states + (hidden_states,)
344
+ if self.gradient_checkpointing and self.training:
345
+ layer_outputs = torch.utils.checkpoint.checkpoint(
346
+ encoder_layer,
347
+ hidden_states)
348
+ else:
349
+ layer_outputs = encoder_layer(
350
+ hidden_states,
351
+ )
352
+ hidden_states = layer_outputs
353
+
354
+ if output_hidden_states:
355
+ encoder_states = encoder_states + (hidden_states,)
356
+
357
+ if not return_dict:
358
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
359
+ return BaseModelOutput(
360
+ last_hidden_state=hidden_states, hidden_states=encoder_states
361
+ )
362
+
363
+
364
+ class InternVisionModel(PreTrainedModel):
365
+ main_input_name = 'pixel_values'
366
+ _supports_flash_attn_2 = True
367
+ config_class = InternVisionConfig
368
+ _no_split_modules = ['InternVisionEncoderLayer']
369
+
370
+ def __init__(self, config: InternVisionConfig):
371
+ super().__init__(config)
372
+ self.config = config
373
+
374
+ self.embeddings = InternVisionEmbeddings(config)
375
+ self.encoder = InternVisionEncoder(config)
376
+
377
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
378
+ pos_emb = self.embeddings.position_embedding
379
+ _, num_positions, embed_dim = pos_emb.shape
380
+ cls_emb = pos_emb[:, :1, :]
381
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
382
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
383
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
384
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
385
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
386
+ self.embeddings.image_size = new_size
387
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
388
+
389
+ def get_input_embeddings(self):
390
+ return self.embeddings
391
+
392
+ def forward(
393
+ self,
394
+ pixel_values: Optional[torch.FloatTensor] = None,
395
+ output_hidden_states: Optional[bool] = None,
396
+ return_dict: Optional[bool] = None,
397
+ pixel_embeds: Optional[torch.FloatTensor] = None,
398
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
399
+ output_hidden_states = (
400
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
401
+ )
402
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
403
+
404
+ if pixel_values is None and pixel_embeds is None:
405
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
406
+
407
+ if pixel_embeds is not None:
408
+ hidden_states = pixel_embeds
409
+ else:
410
+ if len(pixel_values.shape) == 4:
411
+ hidden_states = self.embeddings(pixel_values)
412
+ else:
413
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
414
+ encoder_outputs = self.encoder(
415
+ inputs_embeds=hidden_states,
416
+ output_hidden_states=output_hidden_states,
417
+ return_dict=return_dict,
418
+ )
419
+ last_hidden_state = encoder_outputs.last_hidden_state
420
+ pooled_output = last_hidden_state[:, 0, :]
421
+
422
+ if not return_dict:
423
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
424
+
425
+ return BaseModelOutputWithPooling(
426
+ last_hidden_state=last_hidden_state,
427
+ pooler_output=pooled_output,
428
+ hidden_states=encoder_outputs.hidden_states,
429
+ attentions=encoder_outputs.attentions,
430
+ )
OpenGVLab/InternVL2-4B/modeling_internvl_chat.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import warnings
8
+ from typing import List, Optional, Tuple, Union
9
+
10
+ import torch.utils.checkpoint
11
+ import transformers
12
+ from torch import nn
13
+ from torch.nn import CrossEntropyLoss
14
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
15
+ LlamaTokenizer)
16
+ from transformers.modeling_outputs import CausalLMOutputWithPast
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import ModelOutput, logging
19
+
20
+ from .configuration_internvl_chat import InternVLChatConfig
21
+ from .conversation import get_conv_template
22
+ from .modeling_intern_vit import InternVisionModel, has_flash_attn
23
+ from .modeling_phi3 import Phi3ForCausalLM
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+
28
+ def version_cmp(v1, v2, op='eq'):
29
+ import operator
30
+
31
+ from packaging import version
32
+ op_func = getattr(operator, op)
33
+ return op_func(version.parse(v1), version.parse(v2))
34
+
35
+
36
+ class InternVLChatModel(PreTrainedModel):
37
+ config_class = InternVLChatConfig
38
+ main_input_name = 'pixel_values'
39
+ base_model_prefix = 'language_model'
40
+ _supports_flash_attn_2 = True
41
+ _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Phi3DecoderLayer']
42
+
43
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
44
+ super().__init__(config)
45
+
46
+ assert version_cmp(transformers.__version__, '4.37.0', 'ge')
47
+ image_size = config.force_image_size or config.vision_config.image_size
48
+ patch_size = config.vision_config.patch_size
49
+ self.patch_size = patch_size
50
+ self.select_layer = config.select_layer
51
+ self.template = config.template
52
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
53
+ self.downsample_ratio = config.downsample_ratio
54
+ self.ps_version = config.ps_version
55
+ use_flash_attn = use_flash_attn if has_flash_attn else False
56
+ config.vision_config.use_flash_attn = True if use_flash_attn else False
57
+ config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
58
+
59
+ logger.info(f'num_image_token: {self.num_image_token}')
60
+ logger.info(f'ps_version: {self.ps_version}')
61
+ if vision_model is not None:
62
+ self.vision_model = vision_model
63
+ else:
64
+ self.vision_model = InternVisionModel(config.vision_config)
65
+ if language_model is not None:
66
+ self.language_model = language_model
67
+ else:
68
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
69
+ self.language_model = LlamaForCausalLM(config.llm_config)
70
+ elif config.llm_config.architectures[0] == 'Phi3ForCausalLM':
71
+ self.language_model = Phi3ForCausalLM(config.llm_config)
72
+ else:
73
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
74
+
75
+ vit_hidden_size = config.vision_config.hidden_size
76
+ llm_hidden_size = config.llm_config.hidden_size
77
+
78
+ self.mlp1 = nn.Sequential(
79
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
80
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
81
+ nn.GELU(),
82
+ nn.Linear(llm_hidden_size, llm_hidden_size)
83
+ )
84
+
85
+ self.img_context_token_id = None
86
+ self.conv_template = get_conv_template(self.template)
87
+ self.system_message = self.conv_template.system_message
88
+
89
+ def forward(
90
+ self,
91
+ pixel_values: torch.FloatTensor,
92
+ input_ids: torch.LongTensor = None,
93
+ attention_mask: Optional[torch.Tensor] = None,
94
+ position_ids: Optional[torch.LongTensor] = None,
95
+ image_flags: Optional[torch.LongTensor] = None,
96
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
97
+ labels: Optional[torch.LongTensor] = None,
98
+ use_cache: Optional[bool] = None,
99
+ output_attentions: Optional[bool] = None,
100
+ output_hidden_states: Optional[bool] = None,
101
+ return_dict: Optional[bool] = None,
102
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
103
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
104
+
105
+ image_flags = image_flags.squeeze(-1)
106
+ input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
107
+
108
+ vit_embeds = self.extract_feature(pixel_values)
109
+ vit_embeds = vit_embeds[image_flags == 1]
110
+ vit_batch_size = pixel_values.shape[0]
111
+
112
+ B, N, C = input_embeds.shape
113
+ input_embeds = input_embeds.reshape(B * N, C)
114
+
115
+ if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
116
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
117
+
118
+ input_ids = input_ids.reshape(B * N)
119
+ selected = (input_ids == self.img_context_token_id)
120
+ try:
121
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
122
+ except Exception as e:
123
+ vit_embeds = vit_embeds.reshape(-1, C)
124
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
125
+ f'vit_embeds.shape={vit_embeds.shape}')
126
+ n_token = selected.sum()
127
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
128
+
129
+ input_embeds = input_embeds.reshape(B, N, C)
130
+
131
+ outputs = self.language_model(
132
+ inputs_embeds=input_embeds,
133
+ attention_mask=attention_mask,
134
+ position_ids=position_ids,
135
+ past_key_values=past_key_values,
136
+ use_cache=use_cache,
137
+ output_attentions=output_attentions,
138
+ output_hidden_states=output_hidden_states,
139
+ return_dict=return_dict,
140
+ )
141
+ logits = outputs.logits
142
+
143
+ loss = None
144
+ if labels is not None:
145
+ # Shift so that tokens < n predict n
146
+ shift_logits = logits[..., :-1, :].contiguous()
147
+ shift_labels = labels[..., 1:].contiguous()
148
+ # Flatten the tokens
149
+ loss_fct = CrossEntropyLoss()
150
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
151
+ shift_labels = shift_labels.view(-1)
152
+ # Enable model parallelism
153
+ shift_labels = shift_labels.to(shift_logits.device)
154
+ loss = loss_fct(shift_logits, shift_labels)
155
+
156
+ if not return_dict:
157
+ output = (logits,) + outputs[1:]
158
+ return (loss,) + output if loss is not None else output
159
+
160
+ return CausalLMOutputWithPast(
161
+ loss=loss,
162
+ logits=logits,
163
+ past_key_values=outputs.past_key_values,
164
+ hidden_states=outputs.hidden_states,
165
+ attentions=outputs.attentions,
166
+ )
167
+
168
+ def pixel_shuffle(self, x, scale_factor=0.5):
169
+ n, w, h, c = x.size()
170
+ # N, W, H, C --> N, W, H * scale, C // scale
171
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
172
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
173
+ x = x.permute(0, 2, 1, 3).contiguous()
174
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
175
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
176
+ int(c / (scale_factor * scale_factor)))
177
+ if self.ps_version == 'v1':
178
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
179
+ 'which results in a transposed image.')
180
+ else:
181
+ x = x.permute(0, 2, 1, 3).contiguous()
182
+ return x
183
+
184
+ def extract_feature(self, pixel_values):
185
+ if self.select_layer == -1:
186
+ vit_embeds = self.vision_model(
187
+ pixel_values=pixel_values,
188
+ output_hidden_states=False,
189
+ return_dict=True).last_hidden_state
190
+ else:
191
+ vit_embeds = self.vision_model(
192
+ pixel_values=pixel_values,
193
+ output_hidden_states=True,
194
+ return_dict=True).hidden_states[self.select_layer]
195
+ vit_embeds = vit_embeds[:, 1:, :]
196
+
197
+ h = w = int(vit_embeds.shape[1] ** 0.5)
198
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
199
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
200
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
201
+ vit_embeds = self.mlp1(vit_embeds)
202
+ return vit_embeds
203
+
204
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
205
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
206
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
207
+ if history is not None or return_history:
208
+ print('Now multi-turn chat is not supported in batch_chat.')
209
+ raise NotImplementedError
210
+
211
+ if image_counts is not None:
212
+ num_patches_list = image_counts
213
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
214
+
215
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
216
+ self.img_context_token_id = img_context_token_id
217
+
218
+ if verbose and pixel_values is not None:
219
+ image_bs = pixel_values.shape[0]
220
+ print(f'dynamic ViT batch size: {image_bs}')
221
+
222
+ queries = []
223
+ for idx, num_patches in enumerate(num_patches_list):
224
+ question = questions[idx]
225
+ if pixel_values is not None and '<image>' not in question:
226
+ question = '<image>\n' + question
227
+ template = get_conv_template(self.template)
228
+ template.system_message = self.system_message
229
+ template.append_message(template.roles[0], question)
230
+ template.append_message(template.roles[1], None)
231
+ query = template.get_prompt()
232
+
233
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
234
+ query = query.replace('<image>', image_tokens, 1)
235
+ queries.append(query)
236
+
237
+ tokenizer.padding_side = 'left'
238
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
239
+ input_ids = model_inputs['input_ids'].to(self.device)
240
+ attention_mask = model_inputs['attention_mask'].to(self.device)
241
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
242
+ generation_config['eos_token_id'] = eos_token_id
243
+ generation_output = self.generate(
244
+ pixel_values=pixel_values,
245
+ input_ids=input_ids,
246
+ attention_mask=attention_mask,
247
+ **generation_config
248
+ )
249
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
250
+ responses = [response.split(template.sep.strip())[0].strip() for response in responses]
251
+ return responses
252
+
253
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
254
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
255
+ verbose=False):
256
+
257
+ if history is None and pixel_values is not None and '<image>' not in question:
258
+ question = '<image>\n' + question
259
+
260
+ if num_patches_list is None:
261
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
262
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
263
+
264
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
265
+ self.img_context_token_id = img_context_token_id
266
+
267
+ template = get_conv_template(self.template)
268
+ template.system_message = self.system_message
269
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
270
+
271
+ history = [] if history is None else history
272
+ for (old_question, old_answer) in history:
273
+ template.append_message(template.roles[0], old_question)
274
+ template.append_message(template.roles[1], old_answer)
275
+ template.append_message(template.roles[0], question)
276
+ template.append_message(template.roles[1], None)
277
+ query = template.get_prompt()
278
+
279
+ if verbose and pixel_values is not None:
280
+ image_bs = pixel_values.shape[0]
281
+ print(f'dynamic ViT batch size: {image_bs}')
282
+
283
+ for num_patches in num_patches_list:
284
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
285
+ query = query.replace('<image>', image_tokens, 1)
286
+
287
+ model_inputs = tokenizer(query, return_tensors='pt')
288
+ input_ids = model_inputs['input_ids'].to(self.device)
289
+ attention_mask = model_inputs['attention_mask'].to(self.device)
290
+ generation_config['eos_token_id'] = eos_token_id
291
+ generation_output = self.generate(
292
+ pixel_values=pixel_values,
293
+ input_ids=input_ids,
294
+ attention_mask=attention_mask,
295
+ **generation_config
296
+ )
297
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
298
+ response = response.split(template.sep.strip())[0].strip()
299
+ history.append((question, response))
300
+ if return_history:
301
+ return response, history
302
+ else:
303
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
304
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
305
+ if verbose:
306
+ print(query_to_print, response)
307
+ return response
308
+
309
+ @torch.no_grad()
310
+ def generate(
311
+ self,
312
+ pixel_values: Optional[torch.FloatTensor] = None,
313
+ input_ids: Optional[torch.FloatTensor] = None,
314
+ attention_mask: Optional[torch.LongTensor] = None,
315
+ visual_features: Optional[torch.FloatTensor] = None,
316
+ generation_config: Optional[GenerationConfig] = None,
317
+ output_hidden_states: Optional[bool] = None,
318
+ **generate_kwargs,
319
+ ) -> torch.LongTensor:
320
+
321
+ assert self.img_context_token_id is not None
322
+ if pixel_values is not None:
323
+ if visual_features is not None:
324
+ vit_embeds = visual_features
325
+ else:
326
+ vit_embeds = self.extract_feature(pixel_values)
327
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
328
+ B, N, C = input_embeds.shape
329
+ input_embeds = input_embeds.reshape(B * N, C)
330
+
331
+ input_ids = input_ids.reshape(B * N)
332
+ selected = (input_ids == self.img_context_token_id)
333
+ assert selected.sum() != 0
334
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
335
+
336
+ input_embeds = input_embeds.reshape(B, N, C)
337
+ else:
338
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
339
+
340
+ outputs = self.language_model.generate(
341
+ inputs_embeds=input_embeds,
342
+ attention_mask=attention_mask,
343
+ generation_config=generation_config,
344
+ output_hidden_states=output_hidden_states,
345
+ use_cache=True,
346
+ **generate_kwargs,
347
+ )
348
+
349
+ return outputs
OpenGVLab/InternVL2-4B/modeling_phi3.py ADDED
@@ -0,0 +1,1610 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """ PyTorch Phi-3 model."""
16
+
17
+ import inspect
18
+ import math
19
+ import warnings
20
+ from typing import List, Optional, Tuple, Union
21
+
22
+ import torch
23
+ import torch.nn.functional as F
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
27
+ from transformers.activations import ACT2FN
28
+ from transformers.cache_utils import Cache, DynamicCache
29
+ from transformers.modeling_attn_mask_utils import \
30
+ _prepare_4d_causal_attention_mask
31
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
32
+ CausalLMOutputWithPast,
33
+ SequenceClassifierOutputWithPast,
34
+ TokenClassifierOutput)
35
+ from transformers.modeling_utils import PreTrainedModel
36
+ from transformers.utils import (add_code_sample_docstrings,
37
+ add_start_docstrings,
38
+ add_start_docstrings_to_model_forward,
39
+ is_flash_attn_2_available,
40
+ is_flash_attn_greater_or_equal_2_10, logging,
41
+ replace_return_docstrings)
42
+
43
+ from .configuration_phi3 import Phi3Config
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ # Transformers scans dependencies in the modeling file, causing issues on conditional loading. The regex only ignores try/catch blocks, but not if statements
48
+ # if is_flash_attn_2_available():
49
+ _flash_supports_window_size = False
50
+ try:
51
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
52
+ from flash_attn.bert_padding import (index_first_axis, pad_input, # noqa
53
+ unpad_input)
54
+
55
+ _flash_supports_window_size = 'window_size' in list(inspect.signature(flash_attn_func).parameters)
56
+ has_flash_attn = True
57
+ except ImportError as error:
58
+ logger.warning(
59
+ f'`flash-attention` package not found, consider installing for better performance: {error}.'
60
+ )
61
+ if not _flash_supports_window_size:
62
+ logger.warning(
63
+ "Current `flash-attenton` does not support `window_size`. Either upgrade or use `attn_implementation='eager'`."
64
+ )
65
+ has_flash_attn = False
66
+
67
+ _CHECKPOINT_FOR_DOC = 'microsoft/Phi-3-mini-4k-instruct'
68
+ _CONFIG_FOR_DOC = 'Phi3Config'
69
+
70
+ PHI3_PRETRAINED_MODEL_ARCHIVE_LIST = [
71
+ 'microsoft/Phi-3-mini-4k-instruct',
72
+ 'microsoft/Phi-3-mini-128k-instruct',
73
+ # See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
74
+ ]
75
+
76
+
77
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
78
+ class Phi3RMSNorm(nn.Module):
79
+ def __init__(self, hidden_size, eps=1e-6):
80
+ """
81
+ Phi3RMSNorm is equivalent to T5LayerNorm
82
+ """
83
+ super().__init__()
84
+ self.weight = nn.Parameter(torch.ones(hidden_size))
85
+ self.variance_epsilon = eps
86
+
87
+ def forward(self, hidden_states):
88
+ input_dtype = hidden_states.dtype
89
+ hidden_states = hidden_states.to(torch.float32)
90
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
91
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
92
+ return self.weight * hidden_states.to(input_dtype)
93
+
94
+
95
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
96
+ def _get_unpad_data(attention_mask):
97
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
98
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
99
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
100
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
101
+ return (
102
+ indices,
103
+ cu_seqlens,
104
+ max_seqlen_in_batch,
105
+ )
106
+
107
+
108
+ # Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
109
+ class Phi3RotaryEmbedding(nn.Module):
110
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
111
+ super().__init__()
112
+
113
+ self.dim = dim
114
+ self.max_position_embeddings = max_position_embeddings
115
+ self.base = base
116
+ self.register_buffer('inv_freq', None, persistent=False)
117
+
118
+ @torch.no_grad()
119
+ def forward(self, x, position_ids, seq_len=None):
120
+ # x: [bs, num_attention_heads, seq_len, head_size]
121
+ if self.inv_freq is None:
122
+ self.inv_freq = 1.0 / (
123
+ self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
124
+ )
125
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
126
+ position_ids_expanded = position_ids[:, None, :].float()
127
+ # Force float32 since bfloat16 loses precision on long contexts
128
+ # See https://github.com/huggingface/transformers/pull/29285
129
+ device_type = x.device.type
130
+ device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
131
+ with torch.autocast(device_type=device_type, enabled=False):
132
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
133
+ emb = torch.cat((freqs, freqs), dim=-1)
134
+ cos = emb.cos()
135
+ sin = emb.sin()
136
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
137
+
138
+
139
+ class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding):
140
+ def __init__(self, dim, config, device=None):
141
+ super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
142
+
143
+ self.short_factor = config.rope_scaling['short_factor']
144
+ self.long_factor = config.rope_scaling['long_factor']
145
+ self.original_max_position_embeddings = config.original_max_position_embeddings
146
+
147
+ @torch.no_grad()
148
+ def forward(self, x, position_ids, seq_len=None):
149
+ seq_len = torch.max(position_ids) + 1
150
+ if seq_len > self.original_max_position_embeddings:
151
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
152
+ else:
153
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
154
+
155
+ inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
156
+ self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
157
+
158
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
159
+ position_ids_expanded = position_ids[:, None, :].float()
160
+
161
+ # Force float32 since bfloat16 loses precision on long contexts
162
+ # See https://github.com/huggingface/transformers/pull/29285
163
+ device_type = x.device.type
164
+ device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
165
+ with torch.autocast(device_type=device_type, enabled=False):
166
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
167
+ emb = torch.cat((freqs, freqs), dim=-1)
168
+
169
+ scale = self.max_position_embeddings / self.original_max_position_embeddings
170
+ if scale <= 1.0:
171
+ scaling_factor = 1.0
172
+ else:
173
+ scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
174
+
175
+ cos = emb.cos() * scaling_factor
176
+ sin = emb.sin() * scaling_factor
177
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
178
+
179
+
180
+ class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding):
181
+ def __init__(self, dim, config, device=None):
182
+ super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
183
+
184
+ self.short_factor = config.rope_scaling['short_factor']
185
+ self.long_factor = config.rope_scaling['long_factor']
186
+ self.original_max_position_embeddings = config.original_max_position_embeddings
187
+
188
+ @torch.no_grad()
189
+ def forward(self, x, position_ids, seq_len=None):
190
+ seq_len = torch.max(position_ids) + 1
191
+ if seq_len > self.original_max_position_embeddings:
192
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
193
+ else:
194
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
195
+
196
+ inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
197
+ self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
198
+
199
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
200
+ position_ids_expanded = position_ids[:, None, :].float()
201
+
202
+ # Force float32 since bfloat16 loses precision on long contexts
203
+ # See https://github.com/huggingface/transformers/pull/29285
204
+ device_type = x.device.type
205
+ device_type = device_type if isinstance(device_type, str) and device_type != 'mps' else 'cpu'
206
+ with torch.autocast(device_type=device_type, enabled=False):
207
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
208
+ emb = torch.cat((freqs, freqs), dim=-1)
209
+
210
+ scale = self.max_position_embeddings / self.original_max_position_embeddings
211
+ if scale <= 1.0:
212
+ scaling_factor = 1.0
213
+ else:
214
+ scaling_factor = 0.1 * math.log(scale) + 1.0
215
+
216
+ cos = emb.cos() * scaling_factor
217
+ sin = emb.sin() * scaling_factor
218
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
219
+
220
+
221
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
222
+ def rotate_half(x):
223
+ """Rotates half the hidden dims of the input."""
224
+ x1 = x[..., : x.shape[-1] // 2]
225
+ x2 = x[..., x.shape[-1] // 2 :]
226
+ return torch.cat((-x2, x1), dim=-1)
227
+
228
+
229
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
230
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
231
+ """Applies Rotary Position Embedding to the query and key tensors.
232
+
233
+ Args:
234
+ q (`torch.Tensor`): The query tensor.
235
+ k (`torch.Tensor`): The key tensor.
236
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
237
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
238
+ position_ids (`torch.Tensor`, *optional*):
239
+ Deprecated and unused.
240
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
241
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
242
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
243
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
244
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
245
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
246
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
247
+ Returns:
248
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
249
+ """
250
+ cos = cos.unsqueeze(unsqueeze_dim)
251
+ sin = sin.unsqueeze(unsqueeze_dim)
252
+ q_embed = (q * cos) + (rotate_half(q) * sin)
253
+ k_embed = (k * cos) + (rotate_half(k) * sin)
254
+ return q_embed, k_embed
255
+
256
+
257
+ class Phi3MLP(nn.Module):
258
+ def __init__(self, config):
259
+ super().__init__()
260
+
261
+ self.config = config
262
+ self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
263
+ self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
264
+
265
+ self.activation_fn = ACT2FN[config.hidden_act]
266
+
267
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
268
+ up_states = self.gate_up_proj(hidden_states)
269
+
270
+ gate, up_states = up_states.chunk(2, dim=-1)
271
+ up_states = up_states * self.activation_fn(gate)
272
+
273
+ return self.down_proj(up_states)
274
+
275
+
276
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
277
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
278
+ """
279
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
280
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
281
+ """
282
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
283
+ if n_rep == 1:
284
+ return hidden_states
285
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
286
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
287
+
288
+
289
+ class Phi3Attention(nn.Module):
290
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
291
+
292
+ def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
293
+ super().__init__()
294
+ self.config = config
295
+ self.layer_idx = layer_idx
296
+ if layer_idx is None:
297
+ logger.warning_once(
298
+ f'Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will '
299
+ 'lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` '
300
+ 'when creating this class.'
301
+ )
302
+
303
+ self.attention_dropout = config.attention_dropout
304
+ self.hidden_size = config.hidden_size
305
+ self.num_heads = config.num_attention_heads
306
+ self.head_dim = self.hidden_size // self.num_heads
307
+ self.num_key_value_heads = config.num_key_value_heads
308
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
309
+ self.max_position_embeddings = config.max_position_embeddings
310
+ self.original_max_position_embeddings = config.original_max_position_embeddings
311
+ self.rope_theta = config.rope_theta
312
+ self.rope_scaling = config.rope_scaling
313
+ self.is_causal = True
314
+
315
+ if (self.head_dim * self.num_heads) != self.hidden_size:
316
+ raise ValueError(
317
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
318
+ f' and `num_heads`: {self.num_heads}).'
319
+ )
320
+
321
+ op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
322
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
323
+ self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
324
+ self._init_rope()
325
+
326
+ def _init_rope(self):
327
+ if self.rope_scaling is None:
328
+ self.rotary_emb = Phi3RotaryEmbedding(
329
+ self.head_dim,
330
+ max_position_embeddings=self.max_position_embeddings,
331
+ base=self.rope_theta,
332
+ )
333
+ else:
334
+ scaling_type = self.config.rope_scaling['type']
335
+ if scaling_type == 'su':
336
+ self.rotary_emb = Phi3SuScaledRotaryEmbedding(self.head_dim, self.config)
337
+ elif scaling_type == 'yarn':
338
+ self.rotary_emb = Phi3YarnScaledRotaryEmbedding(self.head_dim, self.config)
339
+ else:
340
+ raise ValueError(f'Unknown RoPE scaling type {scaling_type}')
341
+
342
+ def forward(
343
+ self,
344
+ hidden_states: torch.Tensor,
345
+ attention_mask: Optional[torch.Tensor] = None,
346
+ position_ids: Optional[torch.LongTensor] = None,
347
+ past_key_value: Optional[Cache] = None,
348
+ output_attentions: bool = False,
349
+ use_cache: bool = False,
350
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
351
+ logger.warning_once('You are not running the flash-attention implementation, expect numerical differences.')
352
+
353
+ bsz, q_len, _ = hidden_states.size()
354
+
355
+ qkv = self.qkv_proj(hidden_states)
356
+ query_pos = self.num_heads * self.head_dim
357
+ query_states = qkv[..., :query_pos]
358
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
359
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
360
+
361
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
362
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
363
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
364
+
365
+ kv_seq_len = key_states.shape[-2]
366
+ if past_key_value is not None:
367
+ if self.layer_idx is None:
368
+ raise ValueError(
369
+ f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
370
+ 'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
371
+ 'with a layer index.'
372
+ )
373
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
374
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
375
+
376
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
377
+
378
+ if past_key_value is not None:
379
+ cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
380
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
381
+
382
+ # repeat k/v heads if n_kv_heads < n_heads
383
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
384
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
385
+
386
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
387
+
388
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
389
+ raise ValueError(
390
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
391
+ f' {attn_weights.size()}'
392
+ )
393
+
394
+ if attention_mask is not None:
395
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
396
+ raise ValueError(
397
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
398
+ )
399
+ attn_weights = attn_weights + attention_mask
400
+
401
+ # upcast attention to fp32
402
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
403
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
404
+
405
+ attn_output = torch.matmul(attn_weights, value_states)
406
+
407
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
408
+ raise ValueError(
409
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
410
+ f' {attn_output.size()}'
411
+ )
412
+
413
+ attn_output = attn_output.transpose(1, 2).contiguous()
414
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
415
+
416
+ attn_output = self.o_proj(attn_output)
417
+
418
+ if not output_attentions:
419
+ attn_weights = None
420
+
421
+ return attn_output, attn_weights, past_key_value
422
+
423
+
424
+ class Phi3FlashAttention2(Phi3Attention):
425
+ """
426
+ Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
427
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
428
+ flash attention and deal with padding tokens in case the input contains any of them.
429
+ """
430
+
431
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
432
+ def __init__(self, *args, **kwargs):
433
+ super().__init__(*args, **kwargs)
434
+
435
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
436
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
437
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
438
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
439
+
440
+ def forward(
441
+ self,
442
+ hidden_states: torch.Tensor,
443
+ attention_mask: Optional[torch.LongTensor] = None,
444
+ position_ids: Optional[torch.LongTensor] = None,
445
+ past_key_value: Optional[Cache] = None,
446
+ output_attentions: bool = False,
447
+ use_cache: bool = False,
448
+ **kwargs,
449
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
450
+ # Phi3FlashAttention2 attention does not support output_attentions
451
+
452
+ if not _flash_supports_window_size:
453
+ logger.warning_once(
454
+ "The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
455
+ )
456
+ raise ValueError('The current flash attention version does not support sliding window attention.')
457
+
458
+ output_attentions = False
459
+
460
+ if 'padding_mask' in kwargs:
461
+ warnings.warn(
462
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
463
+ )
464
+
465
+ # overwrite attention_mask with padding_mask
466
+ attention_mask = kwargs.pop('padding_mask')
467
+
468
+ bsz, q_len, _ = hidden_states.size()
469
+
470
+ qkv = self.qkv_proj(hidden_states)
471
+ query_pos = self.num_heads * self.head_dim
472
+ query_states = qkv[..., :query_pos]
473
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
474
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
475
+
476
+ # Flash attention requires the input to have the shape
477
+ # batch_size x seq_length x head_dim x hidden_dim
478
+ # therefore we just need to keep the original shape
479
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
480
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
481
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
482
+
483
+ kv_seq_len = key_states.shape[-2]
484
+ if past_key_value is not None:
485
+ if self.layer_idx is None:
486
+ raise ValueError(
487
+ f'The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} '
488
+ 'for auto-regressive decoding with k/v caching, please make sure to initialize the attention class '
489
+ 'with a layer index.'
490
+ )
491
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
492
+
493
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
494
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
495
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
496
+
497
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
498
+
499
+ use_sliding_windows = (
500
+ _flash_supports_window_size
501
+ and getattr(self.config, 'sliding_window', None) is not None
502
+ and kv_seq_len > self.config.sliding_window
503
+ )
504
+
505
+ if past_key_value is not None:
506
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
507
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
508
+ if (
509
+ getattr(self.config, 'sliding_window', None) is not None
510
+ and kv_seq_len > self.config.sliding_window
511
+ and cache_has_contents
512
+ ):
513
+ slicing_tokens = 1 - self.config.sliding_window
514
+
515
+ past_key = past_key_value[self.layer_idx][0]
516
+ past_value = past_key_value[self.layer_idx][1]
517
+
518
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
519
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
520
+
521
+ if past_key.shape[-2] != self.config.sliding_window - 1:
522
+ raise ValueError(
523
+ f'past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got'
524
+ f' {past_key.shape}'
525
+ )
526
+
527
+ if attention_mask is not None:
528
+ attention_mask = attention_mask[:, slicing_tokens:]
529
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
530
+
531
+ cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
532
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
533
+
534
+ # repeat k/v heads if n_kv_heads < n_heads
535
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
536
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
537
+
538
+ attn_dropout = self.attention_dropout if self.training else 0.0
539
+
540
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
541
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
542
+ # cast them back in the correct dtype just to be sure everything works as expected.
543
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
544
+ # in fp32.
545
+
546
+ if query_states.dtype == torch.float32:
547
+ if torch.is_autocast_enabled():
548
+ target_dtype = torch.get_autocast_gpu_dtype()
549
+ # Handle the case where the model is quantized
550
+ elif hasattr(self.config, '_pre_quantization_dtype'):
551
+ target_dtype = self.config._pre_quantization_dtype
552
+ else:
553
+ target_dtype = self.qkv_proj.weight.dtype
554
+
555
+ logger.warning_once(
556
+ f'The input hidden states seems to be silently casted in float32, this might be related to'
557
+ f' the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in'
558
+ f' {target_dtype}.'
559
+ )
560
+
561
+ query_states = query_states.to(target_dtype)
562
+ key_states = key_states.to(target_dtype)
563
+ value_states = value_states.to(target_dtype)
564
+
565
+ # Reashape to the expected shape for Flash Attention
566
+ query_states = query_states.transpose(1, 2)
567
+ key_states = key_states.transpose(1, 2)
568
+ value_states = value_states.transpose(1, 2)
569
+
570
+ attn_output = self._flash_attention_forward(
571
+ query_states,
572
+ key_states,
573
+ value_states,
574
+ attention_mask,
575
+ q_len,
576
+ dropout=attn_dropout,
577
+ use_sliding_windows=use_sliding_windows,
578
+ )
579
+
580
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
581
+ attn_output = self.o_proj(attn_output)
582
+
583
+ if not output_attentions:
584
+ attn_weights = None
585
+
586
+ return attn_output, attn_weights, past_key_value
587
+
588
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
589
+ def _flash_attention_forward(
590
+ self,
591
+ query_states,
592
+ key_states,
593
+ value_states,
594
+ attention_mask,
595
+ query_length,
596
+ dropout=0.0,
597
+ softmax_scale=None,
598
+ use_sliding_windows=False,
599
+ ):
600
+ """
601
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
602
+ first unpad the input, then computes the attention scores and pad the final attention scores.
603
+
604
+ Args:
605
+ query_states (`torch.Tensor`):
606
+ Input query states to be passed to Flash Attention API
607
+ key_states (`torch.Tensor`):
608
+ Input key states to be passed to Flash Attention API
609
+ value_states (`torch.Tensor`):
610
+ Input value states to be passed to Flash Attention API
611
+ attention_mask (`torch.Tensor`):
612
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
613
+ position of padding tokens and 1 for the position of non-padding tokens.
614
+ dropout (`float`):
615
+ Attention dropout
616
+ softmax_scale (`float`, *optional*):
617
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
618
+ use_sliding_windows (`bool`, *optional*):
619
+ Whether to activate sliding window attention.
620
+ """
621
+ if not self._flash_attn_uses_top_left_mask:
622
+ causal = self.is_causal
623
+ else:
624
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
625
+ causal = self.is_causal and query_length != 1
626
+
627
+ # Contains at least one padding token in the sequence
628
+ if attention_mask is not None:
629
+ batch_size = query_states.shape[0]
630
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
631
+ query_states, key_states, value_states, attention_mask, query_length
632
+ )
633
+
634
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
635
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
636
+
637
+ if not use_sliding_windows:
638
+ attn_output_unpad = flash_attn_varlen_func(
639
+ query_states,
640
+ key_states,
641
+ value_states,
642
+ cu_seqlens_q=cu_seqlens_q,
643
+ cu_seqlens_k=cu_seqlens_k,
644
+ max_seqlen_q=max_seqlen_in_batch_q,
645
+ max_seqlen_k=max_seqlen_in_batch_k,
646
+ dropout_p=dropout,
647
+ softmax_scale=softmax_scale,
648
+ causal=causal,
649
+ )
650
+ else:
651
+ attn_output_unpad = flash_attn_varlen_func(
652
+ query_states,
653
+ key_states,
654
+ value_states,
655
+ cu_seqlens_q=cu_seqlens_q,
656
+ cu_seqlens_k=cu_seqlens_k,
657
+ max_seqlen_q=max_seqlen_in_batch_q,
658
+ max_seqlen_k=max_seqlen_in_batch_k,
659
+ dropout_p=dropout,
660
+ softmax_scale=softmax_scale,
661
+ causal=causal,
662
+ window_size=(self.config.sliding_window, self.config.sliding_window),
663
+ )
664
+
665
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
666
+ else:
667
+ if not use_sliding_windows:
668
+ attn_output = flash_attn_func(
669
+ query_states,
670
+ key_states,
671
+ value_states,
672
+ dropout,
673
+ softmax_scale=softmax_scale,
674
+ causal=causal,
675
+ )
676
+ else:
677
+ attn_output = flash_attn_func(
678
+ query_states,
679
+ key_states,
680
+ value_states,
681
+ dropout,
682
+ softmax_scale=softmax_scale,
683
+ causal=causal,
684
+ window_size=(self.config.sliding_window, self.config.sliding_window),
685
+ )
686
+
687
+ return attn_output
688
+
689
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
690
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
691
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
692
+
693
+ # On the first iteration we need to properly re-create the padding mask
694
+ # by slicing it on the proper place
695
+ if kv_seq_len != attention_mask.shape[-1]:
696
+ attention_mask_num_tokens = attention_mask.shape[-1]
697
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
698
+
699
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
700
+
701
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
702
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
703
+
704
+ if query_length == kv_seq_len:
705
+ query_layer = index_first_axis(
706
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
707
+ )
708
+ cu_seqlens_q = cu_seqlens_k
709
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
710
+ indices_q = indices_k
711
+ elif query_length == 1:
712
+ max_seqlen_in_batch_q = 1
713
+ cu_seqlens_q = torch.arange(
714
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
715
+ ) # There is a memcpy here, that is very bad.
716
+ indices_q = cu_seqlens_q[:-1]
717
+ query_layer = query_layer.squeeze(1)
718
+ else:
719
+ # The -q_len: slice assumes left padding.
720
+ attention_mask = attention_mask[:, -query_length:]
721
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
722
+
723
+ return (
724
+ query_layer,
725
+ key_layer,
726
+ value_layer,
727
+ indices_q,
728
+ (cu_seqlens_q, cu_seqlens_k),
729
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
730
+ )
731
+
732
+
733
+ # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
734
+ # TODO @Arthur no longer copied from LLama after static cache
735
+ class Phi3SdpaAttention(Phi3Attention):
736
+ """
737
+ Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
738
+ `Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
739
+ SDPA API.
740
+ """
741
+
742
+ # Adapted from Phi3Attention.forward
743
+ def forward(
744
+ self,
745
+ hidden_states: torch.Tensor,
746
+ attention_mask: Optional[torch.Tensor] = None,
747
+ position_ids: Optional[torch.LongTensor] = None,
748
+ past_key_value: Optional[Cache] = None,
749
+ output_attentions: bool = False,
750
+ use_cache: bool = False,
751
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
752
+ if output_attentions:
753
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
754
+ logger.warning_once(
755
+ 'Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, '
756
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
757
+ )
758
+ return super().forward(
759
+ hidden_states=hidden_states,
760
+ attention_mask=attention_mask,
761
+ position_ids=position_ids,
762
+ past_key_value=past_key_value,
763
+ output_attentions=output_attentions,
764
+ use_cache=use_cache,
765
+ )
766
+
767
+ bsz, q_len, _ = hidden_states.size()
768
+
769
+ qkv = self.qkv_proj(hidden_states)
770
+ query_pos = self.num_heads * self.head_dim
771
+ query_states = qkv[..., :query_pos]
772
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
773
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
774
+
775
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
776
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
777
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
778
+
779
+ kv_seq_len = key_states.shape[-2]
780
+ if past_key_value is not None:
781
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
782
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
783
+
784
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
785
+
786
+ if past_key_value is not None:
787
+ cache_kwargs = {'sin': sin, 'cos': cos} # Specific to RoPE models
788
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
789
+
790
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
791
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
792
+
793
+ if attention_mask is not None:
794
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
795
+ raise ValueError(
796
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
797
+ )
798
+
799
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
800
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
801
+ if query_states.device.type == 'cuda' and attention_mask is not None:
802
+ query_states = query_states.contiguous()
803
+ key_states = key_states.contiguous()
804
+ value_states = value_states.contiguous()
805
+
806
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
807
+ query_states,
808
+ key_states,
809
+ value_states,
810
+ attn_mask=attention_mask,
811
+ dropout_p=self.attention_dropout if self.training else 0.0,
812
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
813
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
814
+ )
815
+
816
+ attn_output = attn_output.transpose(1, 2).contiguous()
817
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
818
+
819
+ attn_output = self.o_proj(attn_output)
820
+
821
+ return attn_output, None, past_key_value
822
+
823
+
824
+ PHI3_ATTENTION_CLASSES = {
825
+ 'eager': Phi3Attention,
826
+ 'flash_attention_2': Phi3FlashAttention2,
827
+ 'sdpa': Phi3SdpaAttention,
828
+ }
829
+
830
+
831
+ class Phi3DecoderLayer(nn.Module):
832
+ def __init__(self, config: Phi3Config, layer_idx: int):
833
+ super().__init__()
834
+
835
+ self.config = config
836
+ self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
837
+
838
+ self.mlp = Phi3MLP(config)
839
+ self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
840
+
841
+ self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
842
+ self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
843
+ self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
844
+
845
+ def forward(
846
+ self,
847
+ hidden_states: torch.Tensor,
848
+ attention_mask: Optional[torch.Tensor] = None,
849
+ position_ids: Optional[torch.LongTensor] = None,
850
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
851
+ output_attentions: Optional[bool] = False,
852
+ use_cache: Optional[bool] = False,
853
+ **kwargs,
854
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
855
+ if 'padding_mask' in kwargs:
856
+ warnings.warn(
857
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`'
858
+ )
859
+ """
860
+ Args:
861
+ hidden_states (`torch.FloatTensor`):
862
+ input to the layer of shape `(batch, seq_len, embed_dim)`
863
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
864
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
865
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
866
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
867
+ `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
868
+ output_attentions (`bool`, *optional*):
869
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
870
+ returned tensors for more detail.
871
+ use_cache (`bool`, *optional*):
872
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
873
+ (see `past_key_values`).
874
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
875
+ """
876
+
877
+ residual = hidden_states
878
+
879
+ hidden_states = self.input_layernorm(hidden_states)
880
+
881
+ # Self Attention
882
+ attn_outputs, self_attn_weights, present_key_value = self.self_attn(
883
+ hidden_states=hidden_states,
884
+ attention_mask=attention_mask,
885
+ position_ids=position_ids,
886
+ past_key_value=past_key_value,
887
+ output_attentions=output_attentions,
888
+ use_cache=use_cache,
889
+ )
890
+
891
+ hidden_states = residual + self.resid_attn_dropout(attn_outputs)
892
+
893
+ residual = hidden_states
894
+ hidden_states = self.post_attention_layernorm(hidden_states)
895
+ hidden_states = self.mlp(hidden_states)
896
+ hidden_states = residual + self.resid_mlp_dropout(hidden_states)
897
+
898
+ outputs = (hidden_states,)
899
+
900
+ if output_attentions:
901
+ outputs += (self_attn_weights,)
902
+
903
+ if use_cache:
904
+ outputs += (present_key_value,)
905
+
906
+ return outputs
907
+
908
+
909
+ PHI3_START_DOCSTRING = r"""
910
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
911
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
912
+ etc.)
913
+
914
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
915
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
916
+ and behavior.
917
+
918
+ Parameters:
919
+ config ([`Phi3Config`]):
920
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
921
+ load the weights associated with the model, only the configuration. Check out the
922
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
923
+ """
924
+
925
+
926
+ @add_start_docstrings(
927
+ 'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
928
+ PHI3_START_DOCSTRING,
929
+ )
930
+ class Phi3PreTrainedModel(PreTrainedModel):
931
+ config_class = Phi3Config
932
+ base_model_prefix = 'model'
933
+ supports_gradient_checkpointing = True
934
+ _no_split_modules = ['Phi3DecoderLayer']
935
+ _skip_keys_device_placement = 'past_key_values'
936
+ _supports_flash_attn_2 = True
937
+ _supports_sdpa = False
938
+ _supports_cache_class = True
939
+
940
+ _version = '0.0.5'
941
+
942
+ def __init__(self, config: Phi3Config):
943
+ if not has_flash_attn:
944
+ config._attn_implementation = 'eager'
945
+ print('Warning: Flash attention is not available, using eager attention instead.')
946
+ super().__init__(config)
947
+
948
+ def _init_weights(self, module):
949
+ std = self.config.initializer_range
950
+ if isinstance(module, nn.Linear):
951
+ module.weight.data.normal_(mean=0.0, std=std)
952
+ if module.bias is not None:
953
+ module.bias.data.zero_()
954
+ elif isinstance(module, nn.Embedding):
955
+ module.weight.data.normal_(mean=0.0, std=std)
956
+ if module.padding_idx is not None:
957
+ module.weight.data[module.padding_idx].zero_()
958
+
959
+
960
+ PHI3_INPUTS_DOCSTRING = r"""
961
+ Args:
962
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
963
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
964
+ it.
965
+
966
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
967
+ [`PreTrainedTokenizer.__call__`] for details.
968
+
969
+ [What are input IDs?](../glossary#input-ids)
970
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
971
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
972
+
973
+ - 1 for tokens that are **not masked**,
974
+ - 0 for tokens that are **masked**.
975
+
976
+ [What are attention masks?](../glossary#attention-mask)
977
+
978
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
979
+ [`PreTrainedTokenizer.__call__`] for details.
980
+
981
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
982
+ `past_key_values`).
983
+
984
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
985
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
986
+ information on the default strategy.
987
+
988
+ - 1 indicates the head is **not masked**,
989
+ - 0 indicates the head is **masked**.
990
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
991
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
992
+ config.n_positions - 1]`.
993
+
994
+ [What are position IDs?](../glossary#position-ids)
995
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
996
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
997
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
998
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
999
+
1000
+ Two formats are allowed:
1001
+ - a [`~cache_utils.Cache`] instance;
1002
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1003
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1004
+ cache format.
1005
+
1006
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1007
+ legacy cache format will be returned.
1008
+
1009
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1010
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1011
+ of shape `(batch_size, sequence_length)`.
1012
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1013
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1014
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1015
+ model's internal embedding lookup matrix.
1016
+ use_cache (`bool`, *optional*):
1017
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1018
+ `past_key_values`).
1019
+ output_attentions (`bool`, *optional*):
1020
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1021
+ tensors for more detail.
1022
+ output_hidden_states (`bool`, *optional*):
1023
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1024
+ more detail.
1025
+ return_dict (`bool`, *optional*):
1026
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1027
+ """
1028
+
1029
+
1030
+ @add_start_docstrings(
1031
+ 'The bare Phi-3 model outputting raw hidden-states without any specific head on top.',
1032
+ PHI3_START_DOCSTRING,
1033
+ )
1034
+ class Phi3Model(Phi3PreTrainedModel):
1035
+ """
1036
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
1037
+
1038
+ Args:
1039
+ config: Phi3Config
1040
+ """
1041
+
1042
+ def __init__(self, config: Phi3Config):
1043
+ super().__init__(config)
1044
+ self.padding_idx = config.pad_token_id
1045
+ self.vocab_size = config.vocab_size
1046
+
1047
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1048
+ self.embed_dropout = nn.Dropout(config.embd_pdrop)
1049
+ self.layers = nn.ModuleList(
1050
+ [Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1051
+ )
1052
+ self._attn_implementation = config._attn_implementation
1053
+
1054
+ self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1055
+
1056
+ self.gradient_checkpointing = False
1057
+ # Initialize weights and apply final processing
1058
+ self.post_init()
1059
+
1060
+ def get_input_embeddings(self):
1061
+ return self.embed_tokens
1062
+
1063
+ def set_input_embeddings(self, value):
1064
+ self.embed_tokens = value
1065
+
1066
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1067
+ def forward(
1068
+ self,
1069
+ input_ids: torch.LongTensor = None,
1070
+ attention_mask: Optional[torch.Tensor] = None,
1071
+ position_ids: Optional[torch.LongTensor] = None,
1072
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1073
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1074
+ use_cache: Optional[bool] = None,
1075
+ output_attentions: Optional[bool] = None,
1076
+ output_hidden_states: Optional[bool] = None,
1077
+ return_dict: Optional[bool] = None,
1078
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1079
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1080
+ output_hidden_states = (
1081
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1082
+ )
1083
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1084
+
1085
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1086
+
1087
+ # retrieve input_ids and inputs_embeds
1088
+ if input_ids is not None and inputs_embeds is not None:
1089
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
1090
+ elif input_ids is not None:
1091
+ batch_size, seq_length = input_ids.shape[:2]
1092
+ elif inputs_embeds is not None:
1093
+ batch_size, seq_length = inputs_embeds.shape[:2]
1094
+ else:
1095
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
1096
+
1097
+ past_key_values_length = 0
1098
+
1099
+ if self.gradient_checkpointing and self.training:
1100
+ if use_cache:
1101
+ logger.warning_once(
1102
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
1103
+ )
1104
+ use_cache = False
1105
+
1106
+ if use_cache:
1107
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1108
+ if use_legacy_cache:
1109
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1110
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1111
+
1112
+ if position_ids is None:
1113
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1114
+ position_ids = torch.arange(
1115
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1116
+ )
1117
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1118
+ else:
1119
+ position_ids = position_ids.view(-1, seq_length).long()
1120
+
1121
+ if inputs_embeds is None:
1122
+ inputs_embeds = self.embed_tokens(input_ids)
1123
+
1124
+ if attention_mask is not None and self._attn_implementation == 'flash_attention_2' and use_cache:
1125
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1126
+ if is_padding_right:
1127
+ raise ValueError(
1128
+ "You are attempting to perform batched generation with padding_side='right'"
1129
+ ' this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to '
1130
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1131
+ )
1132
+
1133
+ if self._attn_implementation == 'flash_attention_2':
1134
+ # 2d mask is passed through the layers
1135
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1136
+ else:
1137
+ # 4d mask is passed through the layers
1138
+ attention_mask = _prepare_4d_causal_attention_mask(
1139
+ attention_mask,
1140
+ (batch_size, seq_length),
1141
+ inputs_embeds,
1142
+ past_key_values_length,
1143
+ sliding_window=self.config.sliding_window,
1144
+ )
1145
+
1146
+ hidden_states = inputs_embeds
1147
+
1148
+ # decoder layers
1149
+ all_hidden_states = () if output_hidden_states else None
1150
+ all_self_attns = () if output_attentions else None
1151
+ next_decoder_cache = None
1152
+
1153
+ for decoder_layer in self.layers:
1154
+ if output_hidden_states:
1155
+ all_hidden_states += (hidden_states,)
1156
+
1157
+ if self.gradient_checkpointing and self.training:
1158
+ layer_outputs = self._gradient_checkpointing_func(
1159
+ decoder_layer.__call__,
1160
+ hidden_states,
1161
+ attention_mask,
1162
+ position_ids,
1163
+ past_key_values,
1164
+ output_attentions,
1165
+ use_cache,
1166
+ )
1167
+ else:
1168
+ layer_outputs = decoder_layer(
1169
+ hidden_states,
1170
+ attention_mask=attention_mask,
1171
+ position_ids=position_ids,
1172
+ past_key_value=past_key_values,
1173
+ output_attentions=output_attentions,
1174
+ use_cache=use_cache,
1175
+ )
1176
+
1177
+ hidden_states = layer_outputs[0]
1178
+
1179
+ if use_cache:
1180
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1181
+
1182
+ if output_attentions:
1183
+ all_self_attns += (layer_outputs[1],)
1184
+
1185
+ hidden_states = self.norm(hidden_states)
1186
+
1187
+ # add hidden states from the last decoder layer
1188
+ if output_hidden_states:
1189
+ all_hidden_states += (hidden_states,)
1190
+
1191
+ next_cache = None
1192
+ if use_cache:
1193
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1194
+ if not return_dict:
1195
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1196
+ return BaseModelOutputWithPast(
1197
+ last_hidden_state=hidden_states,
1198
+ past_key_values=next_cache,
1199
+ hidden_states=all_hidden_states,
1200
+ attentions=all_self_attns,
1201
+ )
1202
+
1203
+
1204
+ class Phi3ForCausalLM(Phi3PreTrainedModel):
1205
+ _tied_weights_keys = ['lm_head.weight']
1206
+
1207
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
1208
+ def __init__(self, config):
1209
+ super().__init__(config)
1210
+ self.model = Phi3Model(config)
1211
+ self.vocab_size = config.vocab_size
1212
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1213
+
1214
+ # Initialize weights and apply final processing
1215
+ self.post_init()
1216
+
1217
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
1218
+ def get_input_embeddings(self):
1219
+ return self.model.embed_tokens
1220
+
1221
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
1222
+ def set_input_embeddings(self, value):
1223
+ self.model.embed_tokens = value
1224
+
1225
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
1226
+ def get_output_embeddings(self):
1227
+ return self.lm_head
1228
+
1229
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
1230
+ def set_output_embeddings(self, new_embeddings):
1231
+ self.lm_head = new_embeddings
1232
+
1233
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
1234
+ def set_decoder(self, decoder):
1235
+ self.model = decoder
1236
+
1237
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
1238
+ def get_decoder(self):
1239
+ return self.model
1240
+
1241
+ # Ignore copy
1242
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1243
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1244
+ def forward(
1245
+ self,
1246
+ input_ids: torch.LongTensor = None,
1247
+ attention_mask: Optional[torch.Tensor] = None,
1248
+ position_ids: Optional[torch.LongTensor] = None,
1249
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1250
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1251
+ labels: Optional[torch.LongTensor] = None,
1252
+ use_cache: Optional[bool] = None,
1253
+ output_attentions: Optional[bool] = None,
1254
+ output_hidden_states: Optional[bool] = None,
1255
+ return_dict: Optional[bool] = None,
1256
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1257
+ r"""
1258
+ Args:
1259
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1260
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1261
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1262
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1263
+
1264
+ Returns:
1265
+
1266
+ Example:
1267
+
1268
+ ```python
1269
+ >>> from transformers import AutoTokenizer, Phi3ForCausalLM
1270
+
1271
+ >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1272
+ >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1273
+
1274
+ >>> prompt = "This is an example script ."
1275
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1276
+
1277
+ >>> # Generate
1278
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1279
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1280
+ 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
1281
+ ```"""
1282
+
1283
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1284
+ output_hidden_states = (
1285
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1286
+ )
1287
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1288
+
1289
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1290
+ outputs = self.model(
1291
+ input_ids=input_ids,
1292
+ attention_mask=attention_mask,
1293
+ position_ids=position_ids,
1294
+ past_key_values=past_key_values,
1295
+ inputs_embeds=inputs_embeds,
1296
+ use_cache=use_cache,
1297
+ output_attentions=output_attentions,
1298
+ output_hidden_states=output_hidden_states,
1299
+ return_dict=return_dict,
1300
+ )
1301
+
1302
+ hidden_states = outputs[0]
1303
+ logits = self.lm_head(hidden_states)
1304
+ logits = logits.float()
1305
+
1306
+ loss = None
1307
+ if labels is not None:
1308
+ # Shift so that tokens < n predict n
1309
+ shift_logits = logits[..., :-1, :].contiguous()
1310
+ shift_labels = labels[..., 1:].contiguous()
1311
+ # Flatten the tokens
1312
+ loss_fct = CrossEntropyLoss()
1313
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1314
+ shift_labels = shift_labels.view(-1)
1315
+ # Enable model parallelism
1316
+ shift_labels = shift_labels.to(shift_logits.device)
1317
+ loss = loss_fct(shift_logits, shift_labels)
1318
+
1319
+ if not return_dict:
1320
+ output = (logits,) + outputs[1:]
1321
+ return (loss,) + output if loss is not None else output
1322
+
1323
+ return CausalLMOutputWithPast(
1324
+ loss=loss,
1325
+ logits=logits,
1326
+ past_key_values=outputs.past_key_values,
1327
+ hidden_states=outputs.hidden_states,
1328
+ attentions=outputs.attentions,
1329
+ )
1330
+
1331
+ # Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
1332
+ def prepare_inputs_for_generation(
1333
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1334
+ ):
1335
+ if past_key_values is not None:
1336
+ if isinstance(past_key_values, Cache):
1337
+ cache_length = past_key_values.get_seq_length()
1338
+ past_length = past_key_values.seen_tokens
1339
+ max_cache_length = past_key_values.get_max_length()
1340
+ else:
1341
+ cache_length = past_length = past_key_values[0][0].shape[2]
1342
+ max_cache_length = None
1343
+
1344
+ # Keep only the unprocessed tokens:
1345
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1346
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1347
+ # input)
1348
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1349
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1350
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1351
+ # input_ids based on the past_length.
1352
+ elif past_length < input_ids.shape[1]:
1353
+ input_ids = input_ids[:, past_length:]
1354
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1355
+
1356
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1357
+ if (
1358
+ max_cache_length is not None
1359
+ and attention_mask is not None
1360
+ and cache_length + input_ids.shape[1] > max_cache_length
1361
+ ):
1362
+ attention_mask = attention_mask[:, -max_cache_length:]
1363
+
1364
+ position_ids = kwargs.get('position_ids', None)
1365
+ if attention_mask is not None and position_ids is None:
1366
+ # create position_ids on the fly for batch generation
1367
+ position_ids = attention_mask.long().cumsum(-1) - 1
1368
+ position_ids.masked_fill_(attention_mask == 0, 1)
1369
+ if past_key_values:
1370
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1371
+
1372
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1373
+ if (inputs_embeds is not None and past_key_values is None) or (inputs_embeds is not None and len(past_key_values) == 0):
1374
+ model_inputs = {'inputs_embeds': inputs_embeds}
1375
+ else:
1376
+ model_inputs = {'input_ids': input_ids}
1377
+
1378
+ model_inputs.update(
1379
+ {
1380
+ 'position_ids': position_ids,
1381
+ 'past_key_values': past_key_values,
1382
+ 'use_cache': kwargs.get('use_cache'),
1383
+ 'attention_mask': attention_mask,
1384
+ }
1385
+ )
1386
+ return model_inputs
1387
+
1388
+ @staticmethod
1389
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
1390
+ def _reorder_cache(past_key_values, beam_idx):
1391
+ reordered_past = ()
1392
+ for layer_past in past_key_values:
1393
+ reordered_past += (
1394
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1395
+ )
1396
+ return reordered_past
1397
+
1398
+
1399
+ @add_start_docstrings(
1400
+ """
1401
+ The [`Phi3Model`] with a sequence classification head on top (linear layer).
1402
+
1403
+ [`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1404
+ (e.g. GPT-2) do.
1405
+
1406
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1407
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1408
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1409
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1410
+ each row of the batch).
1411
+ """,
1412
+ PHI3_START_DOCSTRING,
1413
+ )
1414
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
1415
+ class Phi3ForSequenceClassification(Phi3PreTrainedModel):
1416
+ def __init__(self, config):
1417
+ super().__init__(config)
1418
+ self.num_labels = config.num_labels
1419
+ self.model = Phi3Model(config)
1420
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1421
+
1422
+ # Initialize weights and apply final processing
1423
+ self.post_init()
1424
+
1425
+ def get_input_embeddings(self):
1426
+ return self.model.embed_tokens
1427
+
1428
+ def set_input_embeddings(self, value):
1429
+ self.model.embed_tokens = value
1430
+
1431
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1432
+ def forward(
1433
+ self,
1434
+ input_ids: torch.LongTensor = None,
1435
+ attention_mask: Optional[torch.Tensor] = None,
1436
+ position_ids: Optional[torch.LongTensor] = None,
1437
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1438
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1439
+ labels: Optional[torch.LongTensor] = None,
1440
+ use_cache: Optional[bool] = None,
1441
+ output_attentions: Optional[bool] = None,
1442
+ output_hidden_states: Optional[bool] = None,
1443
+ return_dict: Optional[bool] = None,
1444
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1445
+ r"""
1446
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1447
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1448
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1449
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1450
+ """
1451
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1452
+
1453
+ model_outputs = self.model(
1454
+ input_ids,
1455
+ attention_mask=attention_mask,
1456
+ position_ids=position_ids,
1457
+ past_key_values=past_key_values,
1458
+ inputs_embeds=inputs_embeds,
1459
+ use_cache=use_cache,
1460
+ output_attentions=output_attentions,
1461
+ output_hidden_states=output_hidden_states,
1462
+ return_dict=return_dict,
1463
+ )
1464
+ hidden_states = model_outputs[0]
1465
+ logits = self.score(hidden_states)
1466
+
1467
+ if input_ids is not None:
1468
+ batch_size = input_ids.shape[0]
1469
+ else:
1470
+ batch_size = inputs_embeds.shape[0]
1471
+
1472
+ if self.config.pad_token_id is None and batch_size != 1:
1473
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1474
+ if self.config.pad_token_id is None:
1475
+ sequence_lengths = -1
1476
+ else:
1477
+ if input_ids is not None:
1478
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1479
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1480
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1481
+ sequence_lengths = sequence_lengths.to(logits.device)
1482
+ else:
1483
+ sequence_lengths = -1
1484
+
1485
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1486
+
1487
+ loss = None
1488
+ if labels is not None:
1489
+ labels = labels.to(logits.device)
1490
+ if self.config.problem_type is None:
1491
+ if self.num_labels == 1:
1492
+ self.config.problem_type = 'regression'
1493
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1494
+ self.config.problem_type = 'single_label_classification'
1495
+ else:
1496
+ self.config.problem_type = 'multi_label_classification'
1497
+
1498
+ if self.config.problem_type == 'regression':
1499
+ loss_fct = MSELoss()
1500
+ if self.num_labels == 1:
1501
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1502
+ else:
1503
+ loss = loss_fct(pooled_logits, labels)
1504
+ elif self.config.problem_type == 'single_label_classification':
1505
+ loss_fct = CrossEntropyLoss()
1506
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1507
+ elif self.config.problem_type == 'multi_label_classification':
1508
+ loss_fct = BCEWithLogitsLoss()
1509
+ loss = loss_fct(pooled_logits, labels)
1510
+ if not return_dict:
1511
+ output = (pooled_logits,) + model_outputs[1:]
1512
+ return ((loss,) + output) if loss is not None else output
1513
+
1514
+ return SequenceClassifierOutputWithPast(
1515
+ loss=loss,
1516
+ logits=pooled_logits,
1517
+ past_key_values=model_outputs.past_key_values,
1518
+ hidden_states=model_outputs.hidden_states,
1519
+ attentions=model_outputs.attentions,
1520
+ )
1521
+
1522
+
1523
+ @add_start_docstrings(
1524
+ """
1525
+ [`Phi3Model`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1526
+ Named-Entity-Recognition (NER) tasks.
1527
+ """,
1528
+ PHI3_START_DOCSTRING,
1529
+ )
1530
+ # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
1531
+ class Phi3ForTokenClassification(Phi3PreTrainedModel):
1532
+ def __init__(self, config: Phi3Config):
1533
+ super().__init__(config)
1534
+ self.num_labels = config.num_labels
1535
+
1536
+ self.model = Phi3Model(config)
1537
+ if hasattr(config, 'classifier_dropout') and config.classifier_dropout is not None:
1538
+ classifier_dropout = config.classifier_dropout
1539
+ elif hasattr(config, 'hidden_dropout') and config.hidden_dropout is not None:
1540
+ classifier_dropout = config.hidden_dropout
1541
+ else:
1542
+ classifier_dropout = 0.1
1543
+ self.dropout = nn.Dropout(classifier_dropout)
1544
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1545
+
1546
+ # Initialize weights and apply final processing
1547
+ self.post_init()
1548
+
1549
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1550
+ @add_code_sample_docstrings(
1551
+ checkpoint=_CHECKPOINT_FOR_DOC,
1552
+ output_type=TokenClassifierOutput,
1553
+ config_class=_CONFIG_FOR_DOC,
1554
+ )
1555
+ def forward(
1556
+ self,
1557
+ input_ids: Optional[torch.LongTensor] = None,
1558
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1559
+ attention_mask: Optional[torch.Tensor] = None,
1560
+ inputs_embeds: Optional[torch.Tensor] = None,
1561
+ labels: Optional[torch.Tensor] = None,
1562
+ use_cache: Optional[bool] = None,
1563
+ output_attentions: Optional[bool] = None,
1564
+ output_hidden_states: Optional[bool] = None,
1565
+ return_dict: Optional[bool] = None,
1566
+ **deprecated_arguments,
1567
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1568
+ r"""
1569
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1570
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1571
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1572
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1573
+ """
1574
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1575
+
1576
+ model_outputs = self.model(
1577
+ input_ids,
1578
+ past_key_values=past_key_values,
1579
+ attention_mask=attention_mask,
1580
+ inputs_embeds=inputs_embeds,
1581
+ use_cache=use_cache,
1582
+ output_attentions=output_attentions,
1583
+ output_hidden_states=output_hidden_states,
1584
+ return_dict=return_dict,
1585
+ )
1586
+
1587
+ hidden_states = model_outputs[0]
1588
+ hidden_states = self.dropout(hidden_states)
1589
+ logits = self.classifier(hidden_states)
1590
+
1591
+ loss = None
1592
+ if labels is not None:
1593
+ # move labels to correct device to enable model parallelism
1594
+ labels = labels.to(logits.device)
1595
+ batch_size, seq_length = labels.shape
1596
+ loss_fct = CrossEntropyLoss()
1597
+ loss = loss_fct(
1598
+ logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
1599
+ )
1600
+
1601
+ if not return_dict:
1602
+ output = (logits,) + model_outputs[2:]
1603
+ return ((loss,) + output) if loss is not None else output
1604
+
1605
+ return TokenClassifierOutput(
1606
+ loss=loss,
1607
+ logits=logits,
1608
+ hidden_states=model_outputs.hidden_states,
1609
+ attentions=model_outputs.attentions,
1610
+ )
OpenGVLab/InternVL2-4B/preprocessor_config.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 448,
3
+ "do_center_crop": true,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "feature_extractor_type": "CLIPFeatureExtractor",
7
+ "image_mean": [
8
+ 0.485,
9
+ 0.456,
10
+ 0.406
11
+ ],
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 3,
18
+ "size": 448
19
+ }
OpenGVLab/InternVL2-4B/special_tokens_map.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<img>",
4
+ "</img>",
5
+ "<IMG_CONTEXT>",
6
+ "<quad>",
7
+ "</quad>",
8
+ "<ref>",
9
+ "</ref>",
10
+ "<box>",
11
+ "</box>"
12
+ ],
13
+ "bos_token": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "eos_token": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": true,
25
+ "single_word": false
26
+ },
27
+ "pad_token": {
28
+ "content": "</s>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": true,
32
+ "single_word": false
33
+ },
34
+ "unk_token": {
35
+ "content": "<unk>",
36
+ "lstrip": false,
37
+ "normalized": false,
38
+ "rstrip": false,
39
+ "single_word": false
40
+ }
41
+ }
OpenGVLab/InternVL2-4B/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
OpenGVLab/InternVL2-4B/tokenizer_config.json ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": true,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32000": {
30
+ "content": "<|endoftext|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32001": {
38
+ "content": "<|assistant|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": true,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "32002": {
46
+ "content": "<|placeholder1|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": true,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "32003": {
54
+ "content": "<|placeholder2|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": true,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "32004": {
62
+ "content": "<|placeholder3|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": true,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "32005": {
70
+ "content": "<|placeholder4|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": true,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "32006": {
78
+ "content": "<|system|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": true,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "32007": {
86
+ "content": "<|end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": true,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "32008": {
94
+ "content": "<|placeholder5|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": true,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "32009": {
102
+ "content": "<|placeholder6|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": true,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "32010": {
110
+ "content": "<|user|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": true,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "32011": {
118
+ "content": "<img>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": true
124
+ },
125
+ "32012": {
126
+ "content": "</img>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": true
132
+ },
133
+ "32013": {
134
+ "content": "<IMG_CONTEXT>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": true
140
+ },
141
+ "32014": {
142
+ "content": "<quad>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": true
148
+ },
149
+ "32015": {
150
+ "content": "</quad>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": true
156
+ },
157
+ "32016": {
158
+ "content": "<ref>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": true
164
+ },
165
+ "32017": {
166
+ "content": "</ref>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": true
172
+ },
173
+ "32018": {
174
+ "content": "<box>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": true
180
+ },
181
+ "32019": {
182
+ "content": "</box>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ }
189
+ },
190
+ "additional_special_tokens": [
191
+ "<img>",
192
+ "</img>",
193
+ "<IMG_CONTEXT>",
194
+ "<quad>",
195
+ "</quad>",
196
+ "<ref>",
197
+ "</ref>",
198
+ "<box>",
199
+ "</box>"
200
+ ],
201
+ "bos_token": "<s>",
202
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
203
+ "clean_up_tokenization_spaces": false,
204
+ "eos_token": "</s>",
205
+ "legacy": false,
206
+ "model_max_length": 8192,
207
+ "pad_token": "</s>",
208
+ "sp_model_kwargs": {},
209
+ "spaces_between_special_tokens": false,
210
+ "tokenizer_class": "LlamaTokenizer",
211
+ "unk_token": "<unk>",
212
+ "use_default_system_prompt": false
213
+ }
OpenGVLab/InternVL2_5-2B/.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ examples/red-panda.mp4 filter=lfs diff=lfs merge=lfs -text
OpenGVLab/InternVL2_5-2B/README.md ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pipeline_tag: image-text-to-text
4
+ library_name: transformers
5
+ base_model:
6
+ - OpenGVLab/InternViT-300M-448px-V2_5
7
+ - internlm/internlm2_5-1_8b-chat
8
+ base_model_relation: merge
9
+ language:
10
+ - multilingual
11
+ tags:
12
+ - internvl
13
+ - custom_code
14
+ ---
15
+
16
+ # InternVL2_5-2B
17
+
18
+ [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[📜 InternVL 1.0\]](https://huggingface.co/papers/2312.14238) [\[📜 InternVL 1.5\]](https://huggingface.co/papers/2404.16821) [\[📜 Mini-InternVL\]](https://arxiv.org/abs/2410.16261) [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271)
19
+
20
+ [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#quick-start) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)
21
+
22
+ <div align="center">
23
+ <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
24
+ </div>
25
+
26
+ ## Introduction
27
+
28
+ We are excited to introduce **InternVL 2.5**, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality.
29
+
30
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/5HDAGOQOZvS1EtI107Ac-.png)
31
+
32
+ ## InternVL 2.5 Family
33
+
34
+ In the following table, we provide an overview of the InternVL 2.5 series.
35
+
36
+ | Model Name | Vision Part | Language Part | HF Link |
37
+ | :-------------: | :-------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :---------------------------------------------------------: |
38
+ | InternVL2_5-1B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-1B) |
39
+ | InternVL2_5-2B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm2_5-1_8b-chat](https://huggingface.co/internlm/internlm2_5-1_8b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-2B) |
40
+ | InternVL2_5-4B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-4B) |
41
+ | InternVL2_5-8B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-8B) |
42
+ | InternVL2_5-26B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [internlm2_5-20b-chat](https://huggingface.co/internlm/internlm2_5-20b-chat) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-26B) |
43
+ | InternVL2_5-38B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-32B-Instruct](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-38B) |
44
+ | InternVL2_5-78B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL2_5-78B) |
45
+
46
+ ## Model Architecture
47
+
48
+ As shown in the following figure, InternVL 2.5 retains the same model architecture as its predecessors, InternVL 1.5 and 2.0, following the "ViT-MLP-LLM" paradigm. In this new version, we integrate a newly incrementally pre-trained InternViT with various pre-trained LLMs, including InternLM 2.5 and Qwen 2.5, using a randomly initialized MLP projector.
49
+
50
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/BiiyXN6NOk0p-3rl3ueyL.png)
51
+
52
+ As in the previous version, we applied a pixel unshuffle operation, reducing the number of visual tokens to one-quarter of the original. Besides, we adopted a similar dynamic resolution strategy as InternVL 1.5, dividing images into tiles of 448×448 pixels. The key difference, starting from InternVL 2.0, is that we additionally introduced support for multi-image and video data.
53
+
54
+ ## Training Strategy
55
+
56
+ ### Dynamic High-Resolution for Multimodal Data
57
+
58
+ In InternVL 2.0 and 2.5, we extend the dynamic high-resolution training approach, enhancing its capabilities to handle multi-image and video datasets.
59
+
60
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/xoMY6rwRrNxbAGYPNyU8g.png)
61
+
62
+ - For single-image datasets, the total number of tiles `n_max` are allocated to a single image for maximum resolution. Visual tokens are enclosed in `<img>` and `</img>` tags.
63
+
64
+ - For multi-image datasets, the total number of tiles `n_max` are distributed across all images in a sample. Each image is labeled with auxiliary tags like `Image-1` and enclosed in `<img>` and `</img>` tags.
65
+
66
+ - For videos, each frame is resized to 448×448. Frames are labeled with tags like `Frame-1` and enclosed in `<img>` and `</img>` tags, similar to images.
67
+
68
+ ### Single Model Training Pipeline
69
+
70
+ The training pipeline for a single model in InternVL 2.5 is structured across three stages, designed to enhance the model's visual perception and multimodal capabilities.
71
+
72
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/5NduZeCPLgPJTFr0RGTq3.png)
73
+
74
+ - **Stage 1: MLP Warmup.** In this stage, only the MLP projector is trained while the vision encoder and language model are frozen. A dynamic high-resolution training strategy is applied for better performance, despite increased cost. This phase ensures robust cross-modal alignment and prepares the model for stable multimodal training.
75
+
76
+ - **Stage 1.5: ViT Incremental Learning (Optional).** This stage allows incremental training of the vision encoder and MLP projector using the same data as Stage 1. It enhances the encoder’s ability to handle rare domains like multilingual OCR and mathematical charts. Once trained, the encoder can be reused across LLMs without retraining, making this stage optional unless new domains are introduced.
77
+
78
+ - **Stage 2: Full Model Instruction Tuning.** The entire model is trained on high-quality multimodal instruction datasets. Strict data quality controls are enforced to prevent degradation of the LLM, as noisy data can cause issues like repetitive or incorrect outputs. After this stage, the training process is complete.
79
+
80
+ ### Progressive Scaling Strategy
81
+
82
+ We introduce a progressive scaling strategy to align the vision encoder with LLMs efficiently. This approach trains with smaller LLMs first (e.g., 20B) to optimize foundational visual capabilities and cross-modal alignment before transferring the vision encoder to larger LLMs (e.g., 72B) without retraining. This reuse skips intermediate stages for larger models.
83
+
84
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/UoNUyS7ctN5pBxNv9KnzH.png)
85
+
86
+ Compared to Qwen2-VL's 1.4 trillion tokens, InternVL2.5-78B uses only 120 billion tokens—less than one-tenth. This strategy minimizes redundancy, maximizes pre-trained component reuse, and enables efficient training for complex vision-language tasks.
87
+
88
+ ### Training Enhancements
89
+
90
+ To improve real-world adaptability and performance, we introduce two key techniques:
91
+
92
+ - **Random JPEG Compression**: Random JPEG compression with quality levels between 75 and 100 is applied as a data augmentation technique. This simulates image degradation from internet sources, enhancing the model's robustness to noisy images.
93
+
94
+ - **Loss Reweighting**: To balance the NTP loss across responses of different lengths, we use a reweighting strategy called **square averaging**. This method balances contributions from responses of varying lengths, mitigating biases toward longer or shorter responses.
95
+
96
+ ### Data Organization
97
+
98
+ #### Dataset Configuration
99
+
100
+ In InternVL 2.0 and 2.5, the organization of the training data is controlled by several key parameters to optimize the balance and distribution of datasets during training.
101
+
102
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/2LJe24b1ua3gjI9gDitVl.png)
103
+
104
+ - **Data Augmentation:** JPEG compression is applied conditionally: enabled for image datasets to enhance robustness and disabled for video datasets to maintain consistent frame quality.
105
+
106
+ - **Maximum Tile Number:** The parameter `n_max` controls the maximum tiles per dataset. For example, higher values (24–36) are used for multi-image or high-resolution data, lower values (6–12) for standard images, and 1 for videos.
107
+
108
+ - **Repeat Factor:** The repeat factor `r` adjusts dataset sampling frequency. Values below 1 reduce a dataset's weight, while values above 1 increase it. This ensures balanced training across tasks and prevents overfitting or underfitting.
109
+
110
+ #### Data Filtering Pipeline
111
+
112
+ During development, we found that LLMs are highly sensitive to data noise, with even small anomalies—like outliers or repetitive data—causing abnormal behavior during inference. Repetitive generation, especially in long-form or CoT reasoning tasks, proved particularly harmful.
113
+
114
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/aka8ZRiKF3ajdyZBnNFZI.png)
115
+
116
+ To address this challenge and support future research, we designed an efficient data filtering pipeline to remove low-quality samples.
117
+
118
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/70l1UxnX-Arn0NoOGwpth.png)
119
+
120
+ The pipeline includes two modules, for **pure-text data**, three key strategies are used:
121
+
122
+ 1. **LLM-Based Quality Scoring**: Each sample is scored (0–10) using a pre-trained LLM with domain-specific prompts. Samples scoring below a threshold (e.g., 7) are removed to ensure high-quality data.
123
+ 2. **Repetition Detection**: Repetitive samples are flagged using LLM-based prompts and manually reviewed. Samples scoring below a stricter threshold (e.g., 3) are excluded to avoid repetitive patterns.
124
+ 3. **Heuristic Rule-Based Filtering**: Anomalies like abnormal sentence lengths or duplicate lines are detected using rules. Flagged samples undergo manual verification to ensure accuracy before removal.
125
+
126
+ For **multimodal data**, two strategies are used:
127
+
128
+ 1. **Repetition Detection**: Repetitive samples in non-academic datasets are flagged and manually reviewed to prevent pattern loops. High-quality datasets are exempt from this process.
129
+ 2. **Heuristic Rule-Based Filtering**: Similar rules are applied to detect visual anomalies, with flagged data verified manually to maintain integrity.
130
+
131
+ #### Training Data
132
+
133
+ As shown in the following figure, from InternVL 1.5 to 2.0 and then to 2.5, the fine-tuning data mixture has undergone iterative improvements in scale, quality, and diversity. For more information about the training data, please refer to our technical report.
134
+
135
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/GaTY9Lde02YzclASMthDa.png)
136
+
137
+ ## Evaluation on Multimodal Capability
138
+
139
+ ### Multimodal Reasoning and Mathematics
140
+
141
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/ihFWMRHbF0lpFTkLqnnj1.png)
142
+
143
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/Nrzq0kjlitjp_jrJCqtwX.png)
144
+
145
+ ### OCR, Chart, and Document Understanding
146
+
147
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/3yCMoLjlbsqY7ZJViGzih.png)
148
+
149
+ ### Multi-Image & Real-World Comprehension
150
+
151
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/DSnalmEyhDVQ9GE0GPCla.png)
152
+
153
+ ### Comprehensive Multimodal & Hallucination Evaluation
154
+
155
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/Z7Raj3TGDiV1H81pDHtoG.png)
156
+
157
+ ### Visual Grounding
158
+
159
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/lPcIrng8MPSg_PM1hpDPt.png)
160
+
161
+ ### Multimodal Multilingual Understanding
162
+
163
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/BPpbAOX36RV8RTnm3j-gs.png)
164
+
165
+ ### Video Understanding
166
+
167
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/tcwH-i1qc8H16En-7AZ5M.png)
168
+
169
+ ## Evaluation on Language Capability
170
+
171
+ Training InternVL 2.0 models led to a decline in pure language capabilities. InternVL 2.5 addresses this by collecting more high-quality open-source data and filtering out low-quality data, achieving better preservation of pure language performance.
172
+
173
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/mxuSKvSY-kfI8zePpXj6y.png)
174
+
175
+ ## Quick Start
176
+
177
+ We provide an example code to run `InternVL2_5-2B` using `transformers`.
178
+
179
+ > Please use transformers>=4.37.2 to ensure the model works normally.
180
+
181
+ ### Model Loading
182
+
183
+ #### 16-bit (bf16 / fp16)
184
+
185
+ ```python
186
+ import torch
187
+ from transformers import AutoTokenizer, AutoModel
188
+ path = "OpenGVLab/InternVL2_5-2B"
189
+ model = AutoModel.from_pretrained(
190
+ path,
191
+ torch_dtype=torch.bfloat16,
192
+ low_cpu_mem_usage=True,
193
+ use_flash_attn=True,
194
+ trust_remote_code=True).eval().cuda()
195
+ ```
196
+
197
+ #### BNB 8-bit Quantization
198
+
199
+ ```python
200
+ import torch
201
+ from transformers import AutoTokenizer, AutoModel
202
+ path = "OpenGVLab/InternVL2_5-2B"
203
+ model = AutoModel.from_pretrained(
204
+ path,
205
+ torch_dtype=torch.bfloat16,
206
+ load_in_8bit=True,
207
+ low_cpu_mem_usage=True,
208
+ use_flash_attn=True,
209
+ trust_remote_code=True).eval()
210
+ ```
211
+
212
+ #### Multiple GPUs
213
+
214
+ The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
215
+
216
+ ```python
217
+ import math
218
+ import torch
219
+ from transformers import AutoTokenizer, AutoModel
220
+
221
+ def split_model(model_name):
222
+ device_map = {}
223
+ world_size = torch.cuda.device_count()
224
+ num_layers = {
225
+ 'InternVL2_5-1B': 24, 'InternVL2_5-2B': 24, 'InternVL2_5-4B': 36, 'InternVL2_5-8B': 32,
226
+ 'InternVL2_5-26B': 48, 'InternVL2_5-38B': 64, 'InternVL2_5-78B': 80}[model_name]
227
+ # Since the first GPU will be used for ViT, treat it as half a GPU.
228
+ num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
229
+ num_layers_per_gpu = [num_layers_per_gpu] * world_size
230
+ num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
231
+ layer_cnt = 0
232
+ for i, num_layer in enumerate(num_layers_per_gpu):
233
+ for j in range(num_layer):
234
+ device_map[f'language_model.model.layers.{layer_cnt}'] = i
235
+ layer_cnt += 1
236
+ device_map['vision_model'] = 0
237
+ device_map['mlp1'] = 0
238
+ device_map['language_model.model.tok_embeddings'] = 0
239
+ device_map['language_model.model.embed_tokens'] = 0
240
+ device_map['language_model.output'] = 0
241
+ device_map['language_model.model.norm'] = 0
242
+ device_map['language_model.lm_head'] = 0
243
+ device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
244
+
245
+ return device_map
246
+
247
+ path = "OpenGVLab/InternVL2_5-2B"
248
+ device_map = split_model('InternVL2_5-2B')
249
+ model = AutoModel.from_pretrained(
250
+ path,
251
+ torch_dtype=torch.bfloat16,
252
+ low_cpu_mem_usage=True,
253
+ use_flash_attn=True,
254
+ trust_remote_code=True,
255
+ device_map=device_map).eval()
256
+ ```
257
+
258
+ ### Inference with Transformers
259
+
260
+ ```python
261
+ import numpy as np
262
+ import torch
263
+ import torchvision.transforms as T
264
+ from decord import VideoReader, cpu
265
+ from PIL import Image
266
+ from torchvision.transforms.functional import InterpolationMode
267
+ from transformers import AutoModel, AutoTokenizer
268
+
269
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
270
+ IMAGENET_STD = (0.229, 0.224, 0.225)
271
+
272
+ def build_transform(input_size):
273
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
274
+ transform = T.Compose([
275
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
276
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
277
+ T.ToTensor(),
278
+ T.Normalize(mean=MEAN, std=STD)
279
+ ])
280
+ return transform
281
+
282
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
283
+ best_ratio_diff = float('inf')
284
+ best_ratio = (1, 1)
285
+ area = width * height
286
+ for ratio in target_ratios:
287
+ target_aspect_ratio = ratio[0] / ratio[1]
288
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
289
+ if ratio_diff < best_ratio_diff:
290
+ best_ratio_diff = ratio_diff
291
+ best_ratio = ratio
292
+ elif ratio_diff == best_ratio_diff:
293
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
294
+ best_ratio = ratio
295
+ return best_ratio
296
+
297
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
298
+ orig_width, orig_height = image.size
299
+ aspect_ratio = orig_width / orig_height
300
+
301
+ # calculate the existing image aspect ratio
302
+ target_ratios = set(
303
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
304
+ i * j <= max_num and i * j >= min_num)
305
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
306
+
307
+ # find the closest aspect ratio to the target
308
+ target_aspect_ratio = find_closest_aspect_ratio(
309
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
310
+
311
+ # calculate the target width and height
312
+ target_width = image_size * target_aspect_ratio[0]
313
+ target_height = image_size * target_aspect_ratio[1]
314
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
315
+
316
+ # resize the image
317
+ resized_img = image.resize((target_width, target_height))
318
+ processed_images = []
319
+ for i in range(blocks):
320
+ box = (
321
+ (i % (target_width // image_size)) * image_size,
322
+ (i // (target_width // image_size)) * image_size,
323
+ ((i % (target_width // image_size)) + 1) * image_size,
324
+ ((i // (target_width // image_size)) + 1) * image_size
325
+ )
326
+ # split the image
327
+ split_img = resized_img.crop(box)
328
+ processed_images.append(split_img)
329
+ assert len(processed_images) == blocks
330
+ if use_thumbnail and len(processed_images) != 1:
331
+ thumbnail_img = image.resize((image_size, image_size))
332
+ processed_images.append(thumbnail_img)
333
+ return processed_images
334
+
335
+ def load_image(image_file, input_size=448, max_num=12):
336
+ image = Image.open(image_file).convert('RGB')
337
+ transform = build_transform(input_size=input_size)
338
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
339
+ pixel_values = [transform(image) for image in images]
340
+ pixel_values = torch.stack(pixel_values)
341
+ return pixel_values
342
+
343
+ # If you want to load a model using multiple GPUs, please refer to the `Multiple GPUs` section.
344
+ path = 'OpenGVLab/InternVL2_5-2B'
345
+ model = AutoModel.from_pretrained(
346
+ path,
347
+ torch_dtype=torch.bfloat16,
348
+ low_cpu_mem_usage=True,
349
+ use_flash_attn=True,
350
+ trust_remote_code=True).eval().cuda()
351
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
352
+
353
+ # set the max number of tiles in `max_num`
354
+ pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
355
+ generation_config = dict(max_new_tokens=1024, do_sample=True)
356
+
357
+ # pure-text conversation (纯文本对话)
358
+ question = 'Hello, who are you?'
359
+ response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
360
+ print(f'User: {question}\nAssistant: {response}')
361
+
362
+ question = 'Can you tell me a story?'
363
+ response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
364
+ print(f'User: {question}\nAssistant: {response}')
365
+
366
+ # single-image single-round conversation (单图单轮对话)
367
+ question = '<image>\nPlease describe the image shortly.'
368
+ response = model.chat(tokenizer, pixel_values, question, generation_config)
369
+ print(f'User: {question}\nAssistant: {response}')
370
+
371
+ # single-image multi-round conversation (单图多轮对话)
372
+ question = '<image>\nPlease describe the image in detail.'
373
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
374
+ print(f'User: {question}\nAssistant: {response}')
375
+
376
+ question = 'Please write a poem according to the image.'
377
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
378
+ print(f'User: {question}\nAssistant: {response}')
379
+
380
+ # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
381
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
382
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
383
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
384
+
385
+ question = '<image>\nDescribe the two images in detail.'
386
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
387
+ history=None, return_history=True)
388
+ print(f'User: {question}\nAssistant: {response}')
389
+
390
+ question = 'What are the similarities and differences between these two images.'
391
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
392
+ history=history, return_history=True)
393
+ print(f'User: {question}\nAssistant: {response}')
394
+
395
+ # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
396
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
397
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
398
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
399
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
400
+
401
+ question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
402
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
403
+ num_patches_list=num_patches_list,
404
+ history=None, return_history=True)
405
+ print(f'User: {question}\nAssistant: {response}')
406
+
407
+ question = 'What are the similarities and differences between these two images.'
408
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
409
+ num_patches_list=num_patches_list,
410
+ history=history, return_history=True)
411
+ print(f'User: {question}\nAssistant: {response}')
412
+
413
+ # batch inference, single image per sample (单图批处理)
414
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
415
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
416
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
417
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
418
+
419
+ questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
420
+ responses = model.batch_chat(tokenizer, pixel_values,
421
+ num_patches_list=num_patches_list,
422
+ questions=questions,
423
+ generation_config=generation_config)
424
+ for question, response in zip(questions, responses):
425
+ print(f'User: {question}\nAssistant: {response}')
426
+
427
+ # video multi-round conversation (视频多轮对话)
428
+ def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
429
+ if bound:
430
+ start, end = bound[0], bound[1]
431
+ else:
432
+ start, end = -100000, 100000
433
+ start_idx = max(first_idx, round(start * fps))
434
+ end_idx = min(round(end * fps), max_frame)
435
+ seg_size = float(end_idx - start_idx) / num_segments
436
+ frame_indices = np.array([
437
+ int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
438
+ for idx in range(num_segments)
439
+ ])
440
+ return frame_indices
441
+
442
+ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
443
+ vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
444
+ max_frame = len(vr) - 1
445
+ fps = float(vr.get_avg_fps())
446
+
447
+ pixel_values_list, num_patches_list = [], []
448
+ transform = build_transform(input_size=input_size)
449
+ frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
450
+ for frame_index in frame_indices:
451
+ img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
452
+ img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
453
+ pixel_values = [transform(tile) for tile in img]
454
+ pixel_values = torch.stack(pixel_values)
455
+ num_patches_list.append(pixel_values.shape[0])
456
+ pixel_values_list.append(pixel_values)
457
+ pixel_values = torch.cat(pixel_values_list)
458
+ return pixel_values, num_patches_list
459
+
460
+ video_path = './examples/red-panda.mp4'
461
+ pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
462
+ pixel_values = pixel_values.to(torch.bfloat16).cuda()
463
+ video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
464
+ question = video_prefix + 'What is the red panda doing?'
465
+ # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
466
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
467
+ num_patches_list=num_patches_list, history=None, return_history=True)
468
+ print(f'User: {question}\nAssistant: {response}')
469
+
470
+ question = 'Describe this video in detail.'
471
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
472
+ num_patches_list=num_patches_list, history=history, return_history=True)
473
+ print(f'User: {question}\nAssistant: {response}')
474
+ ```
475
+
476
+ #### Streaming Output
477
+
478
+ Besides this method, you can also use the following code to get streamed output.
479
+
480
+ ```python
481
+ from transformers import TextIteratorStreamer
482
+ from threading import Thread
483
+
484
+ # Initialize the streamer
485
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
486
+ # Define the generation configuration
487
+ generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
488
+ # Start the model chat in a separate thread
489
+ thread = Thread(target=model.chat, kwargs=dict(
490
+ tokenizer=tokenizer, pixel_values=pixel_values, question=question,
491
+ history=None, return_history=False, generation_config=generation_config,
492
+ ))
493
+ thread.start()
494
+
495
+ # Initialize an empty string to store the generated text
496
+ generated_text = ''
497
+ # Loop through the streamer to get the new text as it is generated
498
+ for new_text in streamer:
499
+ if new_text == model.conv_template.sep:
500
+ break
501
+ generated_text += new_text
502
+ print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line
503
+ ```
504
+
505
+ ## Finetune
506
+
507
+ Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTurner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
508
+
509
+ ## Deployment
510
+
511
+ ### LMDeploy
512
+
513
+ LMDeploy is a toolkit for compressing, deploying, and serving LLMs & VLMs.
514
+
515
+ ```sh
516
+ pip install lmdeploy>=0.6.4
517
+ ```
518
+
519
+ LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
520
+
521
+ #### A 'Hello, world' Example
522
+
523
+ ```python
524
+ from lmdeploy import pipeline, TurbomindEngineConfig
525
+ from lmdeploy.vl import load_image
526
+
527
+ model = 'OpenGVLab/InternVL2_5-2B'
528
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
529
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
530
+ response = pipe(('describe this image', image))
531
+ print(response.text)
532
+ ```
533
+
534
+ If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
535
+
536
+ #### Multi-images Inference
537
+
538
+ When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
539
+
540
+ ```python
541
+ from lmdeploy import pipeline, TurbomindEngineConfig
542
+ from lmdeploy.vl import load_image
543
+ from lmdeploy.vl.constants import IMAGE_TOKEN
544
+
545
+ model = 'OpenGVLab/InternVL2_5-2B'
546
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
547
+
548
+ image_urls=[
549
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
550
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
551
+ ]
552
+
553
+ images = [load_image(img_url) for img_url in image_urls]
554
+ # Numbering images improves multi-image conversations
555
+ response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
556
+ print(response.text)
557
+ ```
558
+
559
+ #### Batch Prompts Inference
560
+
561
+ Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
562
+
563
+ ```python
564
+ from lmdeploy import pipeline, TurbomindEngineConfig
565
+ from lmdeploy.vl import load_image
566
+
567
+ model = 'OpenGVLab/InternVL2_5-2B'
568
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
569
+
570
+ image_urls=[
571
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
572
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
573
+ ]
574
+ prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
575
+ response = pipe(prompts)
576
+ print(response)
577
+ ```
578
+
579
+ #### Multi-turn Conversation
580
+
581
+ There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
582
+
583
+ ```python
584
+ from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
585
+ from lmdeploy.vl import load_image
586
+
587
+ model = 'OpenGVLab/InternVL2_5-2B'
588
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
589
+
590
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
591
+ gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
592
+ sess = pipe.chat(('describe this image', image), gen_config=gen_config)
593
+ print(sess.response.text)
594
+ sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
595
+ print(sess.response.text)
596
+ ```
597
+
598
+ #### Service
599
+
600
+ LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
601
+
602
+ ```shell
603
+ lmdeploy serve api_server OpenGVLab/InternVL2_5-2B --server-port 23333
604
+ ```
605
+
606
+ To use the OpenAI-style interface, you need to install OpenAI:
607
+
608
+ ```shell
609
+ pip install openai
610
+ ```
611
+
612
+ Then, use the code below to make the API call:
613
+
614
+ ```python
615
+ from openai import OpenAI
616
+
617
+ client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
618
+ model_name = client.models.list().data[0].id
619
+ response = client.chat.completions.create(
620
+ model=model_name,
621
+ messages=[{
622
+ 'role':
623
+ 'user',
624
+ 'content': [{
625
+ 'type': 'text',
626
+ 'text': 'describe this image',
627
+ }, {
628
+ 'type': 'image_url',
629
+ 'image_url': {
630
+ 'url':
631
+ 'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
632
+ },
633
+ }],
634
+ }],
635
+ temperature=0.8,
636
+ top_p=0.8)
637
+ print(response)
638
+ ```
639
+
640
+ ## License
641
+
642
+ This project is released under the MIT License. This project uses the pre-trained internlm2_5-1_8b-chat as a component, which is licensed under the Apache License 2.0.
643
+
644
+ ## Citation
645
+
646
+ If you find this project useful in your research, please consider citing:
647
+
648
+ ```BibTeX
649
+ @article{chen2024expanding,
650
+ title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
651
+ author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
652
+ journal={arXiv preprint arXiv:2412.05271},
653
+ year={2024}
654
+ }
655
+ @article{gao2024mini,
656
+ title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
657
+ author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
658
+ journal={arXiv preprint arXiv:2410.16261},
659
+ year={2024}
660
+ }
661
+ @article{chen2024far,
662
+ title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
663
+ author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
664
+ journal={arXiv preprint arXiv:2404.16821},
665
+ year={2024}
666
+ }
667
+ @inproceedings{chen2024internvl,
668
+ title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
669
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
670
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
671
+ pages={24185--24198},
672
+ year={2024}
673
+ }
674
+ ```
OpenGVLab/InternVL2_5-2B/added_tokens.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 92552,
3
+ "</img>": 92545,
4
+ "</quad>": 92548,
5
+ "</ref>": 92550,
6
+ "<IMG_CONTEXT>": 92546,
7
+ "<box>": 92551,
8
+ "<img>": 92544,
9
+ "<quad>": 92547,
10
+ "<ref>": 92549
11
+ }
OpenGVLab/InternVL2_5-2B/config.json ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "architectures": [
4
+ "InternVLChatModel"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
8
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
9
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
10
+ },
11
+ "downsample_ratio": 0.5,
12
+ "dynamic_image_size": true,
13
+ "force_image_size": 448,
14
+ "llm_config": {
15
+ "_name_or_path": "internlm/internlm2_5-1_8b-chat",
16
+ "add_cross_attention": false,
17
+ "architectures": [
18
+ "InternLM2ForCausalLM"
19
+ ],
20
+ "attn_implementation": "flash_attention_2",
21
+ "auto_map": {
22
+ "AutoConfig": "configuration_internlm2.InternLM2Config",
23
+ "AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
24
+ "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM",
25
+ "AutoModelForSequenceClassification": "modeling_internlm2.InternLM2ForSequenceClassification"
26
+ },
27
+ "bad_words_ids": null,
28
+ "begin_suppress_tokens": null,
29
+ "bias": false,
30
+ "bos_token_id": 1,
31
+ "chunk_size_feed_forward": 0,
32
+ "cross_attention_hidden_size": null,
33
+ "decoder_start_token_id": null,
34
+ "diversity_penalty": 0.0,
35
+ "do_sample": false,
36
+ "early_stopping": false,
37
+ "encoder_no_repeat_ngram_size": 0,
38
+ "eos_token_id": 2,
39
+ "exponential_decay_length_penalty": null,
40
+ "finetuning_task": null,
41
+ "forced_bos_token_id": null,
42
+ "forced_eos_token_id": null,
43
+ "hidden_act": "silu",
44
+ "hidden_size": 2048,
45
+ "id2label": {
46
+ "0": "LABEL_0",
47
+ "1": "LABEL_1"
48
+ },
49
+ "initializer_range": 0.02,
50
+ "intermediate_size": 8192,
51
+ "is_decoder": false,
52
+ "is_encoder_decoder": false,
53
+ "label2id": {
54
+ "LABEL_0": 0,
55
+ "LABEL_1": 1
56
+ },
57
+ "length_penalty": 1.0,
58
+ "max_length": 20,
59
+ "max_position_embeddings": 32768,
60
+ "min_length": 0,
61
+ "model_type": "internlm2",
62
+ "no_repeat_ngram_size": 0,
63
+ "num_attention_heads": 16,
64
+ "num_beam_groups": 1,
65
+ "num_beams": 1,
66
+ "num_hidden_layers": 24,
67
+ "num_key_value_heads": 8,
68
+ "num_return_sequences": 1,
69
+ "output_attentions": false,
70
+ "output_hidden_states": false,
71
+ "output_scores": false,
72
+ "pad_token_id": 2,
73
+ "prefix": null,
74
+ "pretraining_tp": 1,
75
+ "problem_type": null,
76
+ "pruned_heads": {},
77
+ "remove_invalid_values": false,
78
+ "repetition_penalty": 1.0,
79
+ "return_dict": true,
80
+ "return_dict_in_generate": false,
81
+ "rms_norm_eps": 1e-05,
82
+ "rope_scaling": {
83
+ "factor": 2.0,
84
+ "type": "dynamic"
85
+ },
86
+ "rope_theta": 1000000,
87
+ "sep_token_id": null,
88
+ "suppress_tokens": null,
89
+ "task_specific_params": null,
90
+ "temperature": 1.0,
91
+ "tf_legacy_loss": false,
92
+ "tie_encoder_decoder": false,
93
+ "tie_word_embeddings": false,
94
+ "tokenizer_class": null,
95
+ "top_k": 50,
96
+ "top_p": 1.0,
97
+ "torch_dtype": "bfloat16",
98
+ "torchscript": false,
99
+ "transformers_version": "4.37.2",
100
+ "typical_p": 1.0,
101
+ "use_bfloat16": true,
102
+ "use_cache": true,
103
+ "vocab_size": 92553
104
+ },
105
+ "max_dynamic_patch": 12,
106
+ "min_dynamic_patch": 1,
107
+ "model_type": "internvl_chat",
108
+ "ps_version": "v2",
109
+ "select_layer": -1,
110
+ "template": "internvl2_5",
111
+ "torch_dtype": "bfloat16",
112
+ "use_backbone_lora": 0,
113
+ "use_llm_lora": 0,
114
+ "use_thumbnail": true,
115
+ "vision_config": {
116
+ "architectures": [
117
+ "InternVisionModel"
118
+ ],
119
+ "attention_dropout": 0.0,
120
+ "drop_path_rate": 0.0,
121
+ "dropout": 0.0,
122
+ "hidden_act": "gelu",
123
+ "hidden_size": 1024,
124
+ "image_size": 448,
125
+ "initializer_factor": 1.0,
126
+ "initializer_range": 0.02,
127
+ "intermediate_size": 4096,
128
+ "layer_norm_eps": 1e-06,
129
+ "model_type": "intern_vit_6b",
130
+ "norm_type": "layer_norm",
131
+ "num_attention_heads": 16,
132
+ "num_channels": 3,
133
+ "num_hidden_layers": 24,
134
+ "output_attentions": false,
135
+ "output_hidden_states": false,
136
+ "patch_size": 14,
137
+ "qk_normalization": false,
138
+ "qkv_bias": true,
139
+ "return_dict": true,
140
+ "torch_dtype": "bfloat16",
141
+ "transformers_version": "4.37.2",
142
+ "use_bfloat16": true,
143
+ "use_flash_attn": true
144
+ }
145
+ }