zhili-zh commited on
Commit
b6d37c4
·
verified ·
1 Parent(s): 66d0896

Upload nanoVLM using push_to_hub

Browse files
Files changed (3) hide show
  1. README.md +27 -0
  2. config.json +56 -0
  3. model.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
4
+ # Doc / guide: https://huggingface.co/docs/hub/model-cards
5
+ library_name: nanovlm
6
+ license: mit
7
+ pipeline_tag: image-text-to-text
8
+ tags:
9
+ - vision-language
10
+ - multimodal
11
+ - research
12
+ ---
13
+
14
+ **nanoVLM** is a minimal and lightweight Vision-Language Model (VLM) designed for efficient training and experimentation. Built using pure PyTorch, the entire model architecture and training logic fits within ~750 lines of code. It combines a ViT-based image encoder (SigLIP-B/16-224-85M) with a lightweight causal language model (SmolLM2-135M), resulting in a compact 222M parameter model.
15
+
16
+ For more information, check out the base model on https://huggingface.co/lusxvr/nanoVLM-222M.
17
+
18
+ **Usage:**
19
+
20
+ Clone the nanoVLM repository: https://github.com/huggingface/nanoVLM.
21
+ Follow the install instructions and run the following code:
22
+
23
+ ```python
24
+ from models.vision_language_model import VisionLanguageModel
25
+
26
+ model = VisionLanguageModel.from_pretrained("zhili-zh/nanoVLM")
27
+ ```
config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "vit_hidden_dim": 768,
3
+ "vit_inter_dim": 3072,
4
+ "vit_patch_size": 16,
5
+ "vit_img_size": 512,
6
+ "vit_n_heads": 12,
7
+ "vit_dropout": 0.0,
8
+ "vit_n_blocks": 12,
9
+ "vit_ln_eps": 1e-06,
10
+ "vit_cls_flag": false,
11
+ "vit_model_type": "google/siglip2-base-patch16-512",
12
+ "lm_hidden_dim": 960,
13
+ "lm_inter_dim": 2560,
14
+ "lm_rms_eps": 1e-05,
15
+ "lm_re_base": 100000,
16
+ "lm_max_position_embeddings": 8192,
17
+ "lm_base_vocab_size": 49152,
18
+ "extra_token_amount": 17,
19
+ "lm_vocab_size": 49169,
20
+ "lm_n_heads": 15,
21
+ "lm_n_kv_heads": 5,
22
+ "lm_dropout": 0.0,
23
+ "lm_n_blocks": 32,
24
+ "lm_attn_scaling": 1.0,
25
+ "lm_max_length": 1024,
26
+ "lm_use_tokens": false,
27
+ "lm_tie_weights": true,
28
+ "lm_model_type": "HuggingFaceTB/SmolLM2-360M-Instruct",
29
+ "lm_tokenizer": "HuggingFaceTB/SmolLM2-360M-Instruct",
30
+ "lm_chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
31
+ "mp_pixel_shuffle_factor": 4,
32
+ "mp_image_token_length": 64,
33
+ "max_img_size": 1024,
34
+ "vlm_extra_tokens": {
35
+ "image_token": "<|image|>",
36
+ "r1c1": "<row_1_col_1>",
37
+ "r1c2": "<row_1_col_2>",
38
+ "r1c3": "<row_1_col_3>",
39
+ "r1c4": "<row_1_col_4>",
40
+ "r2c1": "<row_2_col_1>",
41
+ "r2c2": "<row_2_col_2>",
42
+ "r2c3": "<row_2_col_3>",
43
+ "r2c4": "<row_2_col_4>",
44
+ "r3c1": "<row_3_col_1>",
45
+ "r3c2": "<row_3_col_2>",
46
+ "r3c3": "<row_3_col_3>",
47
+ "r3c4": "<row_3_col_4>",
48
+ "r4c1": "<row_4_col_1>",
49
+ "r4c2": "<row_4_col_2>",
50
+ "r4c3": "<row_4_col_3>",
51
+ "r4c4": "<row_4_col_4>"
52
+ },
53
+ "vlm_load_backbone_weights": true,
54
+ "vlm_checkpoint_path": "checkpoints",
55
+ "hf_repo_name": "nanoVLM"
56
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d7d68128c84e6e8f54537a1bc8edbc8830b16e3f3be3730184cc259e20729c5
3
+ size 1840316344