Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,186 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
|
5 |
+
|
6 |
+
# Audio-Reasoner
|
7 |
+
<p align="center">
|
8 |
+
<img src="assets\title.png" width="90%"/>
|
9 |
+
</p>
|
10 |
+
|
11 |
+
## Abstract
|
12 |
+
We implemented inference scaling on **Audio-Reasoner**, a large audio language model, enabling **deepthink** and **structured chain-of-thought (COT) reasoning** for multimodal understanding and reasoning. To achieve this, we constructed CoTA, a high-quality dataset with **1.2M reasoning-rich samples** using structured COT techniques. Audio-Reasoner achieves state-of-the-art results on **MMAU-mini(+25.42%)** and **AIR-Bench-Chat(+14.57%)** benchmarks.
|
13 |
+
|
14 |
+
<p align="center">
|
15 |
+
Audio-Reasoner-7B <a href="https://huggingface.co/zhifeixie/Audio-Reasoner/tree/main">🤗</a> | CoTA Dataset <a href="https://huggingface.co"></a> 🤗 (coming soon)<br>
|
16 |
+
Paper <a href="https://arxiv.org/abs/2503.02318"> 📑</a> | Wechat <a href="https://github.com/xzf-thu/Audio-Reasoner/blob/main/assets/wechat.jpg">💭</a> | Code <a href="https://github.com/xzf-thu/Audio-Reasoner"> ⚙️</a>
|
17 |
+
<br>
|
18 |
+
<a href="#demo"> Demo</a> • <a href="#install">Install</a> • <a href="#quick-start">Quick Start</a> • <a href="#faq">FAQ</a> • <a href="#contact">Contact us</a><br>
|
19 |
+
<br>
|
20 |
+
If you like us, pls give us a star⭐ !
|
21 |
+
</p>
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
## Main Results
|
26 |
+
<p align="center">
|
27 |
+
<img src="assets\main_result.png" width="100%"/>
|
28 |
+
</p>
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
## News and Updates
|
34 |
+
- **2025.03.05:** ✅**Audio-Reasoner-7B checkpoint is released on HuggingFace<a href="https://huggingface.co/zhifeixie/Audio-Reasoner/tree/main">🤗</a> !**
|
35 |
+
- **2025.03.05:** ✅**Audio-Reasoner Paper is uploaded to arXiv<a href="https://arxiv.org/abs/2503.02318"> 📑</a>.**
|
36 |
+
- **2025.03.04:** ✅**Demos, inference code and evaluation results have been released.**
|
37 |
+
- **2025.03.04:** ✅**Create this repo.**
|
38 |
+
|
39 |
+
## Roadmap
|
40 |
+
- **2025.03:** **🔜Upload CoTA dataset to HuggingFace🤗.**
|
41 |
+
|
42 |
+
- **2025.04:** **🔜Open-source data systhesis pipeline and training code**.
|
43 |
+
|
44 |
+
## Demo
|
45 |
+
<p align="center" width="80%">
|
46 |
+
<video controls src="https://github.com/user-attachments/assets/d50f75e7-288b-454b-92a3-c6f058be231b" title="v" width="100%"></video>
|
47 |
+
</p>
|
48 |
+
|
49 |
+
## Features
|
50 |
+
✅ Audio-Reasoner enables **deep reasoning and inference scaling** in audio-based tasks, built on Qwen2-Audio-Instruct with structured CoT training.
|
51 |
+
|
52 |
+
✅ CoTA offers **1.2M** high-quality captions and QA pairs across domains for structured reasoning and enhanced pretraining.
|
53 |
+
|
54 |
+
✅ Pretrained model and dataset encompassing various types of audio including sound, music, and speech, has achieved state-of-the-art results across multiple benchmarks. Refer to our <a href="https://arxiv.org/abs/2503.02318">paper</a> for details.
|
55 |
+
|
56 |
+
|
57 |
+
## Install
|
58 |
+
|
59 |
+
**Clone and install**
|
60 |
+
|
61 |
+
- Clone the repo
|
62 |
+
``` sh
|
63 |
+
git clone https://github.com/xzf-thu/Audio-Reasoner.git
|
64 |
+
|
65 |
+
cd Audio-Reasoner
|
66 |
+
```
|
67 |
+
|
68 |
+
- Install the required packages
|
69 |
+
```sh
|
70 |
+
conda create -n Audio-Reasoner python=3.10
|
71 |
+
conda activate Audio-Reasoner
|
72 |
+
|
73 |
+
pip install -r requirements.txt
|
74 |
+
pip install transformers==4.49.1
|
75 |
+
```
|
76 |
+
|
77 |
+
## Quick Start
|
78 |
+
|
79 |
+
**Chat using ms-swift**
|
80 |
+
```sh
|
81 |
+
import os
|
82 |
+
import re
|
83 |
+
from typing import List, Literal
|
84 |
+
from swift.llm import InferEngine, InferRequest, PtEngine, RequestConfig, load_dataset, get_template
|
85 |
+
from swift.plugin import InferStats
|
86 |
+
|
87 |
+
|
88 |
+
def infer_stream(engine: 'InferEngine', infer_request: 'InferRequest'):
|
89 |
+
request_config = RequestConfig(max_tokens=2048, temperature=0, stream=True)
|
90 |
+
metric = InferStats()
|
91 |
+
gen = engine.infer([infer_request], request_config, metrics=[metric])
|
92 |
+
query = infer_request.messages[0]['content']
|
93 |
+
output = ""
|
94 |
+
print(f'query: {query}\nresponse: ', end='')
|
95 |
+
for resp_list in gen:
|
96 |
+
if resp_list[0] is None:
|
97 |
+
continue
|
98 |
+
print(resp_list[0].choices[0].delta.content, end='', flush=True)
|
99 |
+
output += resp_list[0].choices[0].delta.content
|
100 |
+
print()
|
101 |
+
print(f'metric: {metric.compute()}')
|
102 |
+
return output
|
103 |
+
|
104 |
+
|
105 |
+
def get_message(audiopath, prompt):
|
106 |
+
messages = [
|
107 |
+
{"role": "system", "content": system},
|
108 |
+
{
|
109 |
+
'role':
|
110 |
+
'user',
|
111 |
+
'content': [{
|
112 |
+
'type': 'audio',
|
113 |
+
'audio': audiopath
|
114 |
+
}, {
|
115 |
+
'type': 'text',
|
116 |
+
'text': prompt
|
117 |
+
}]
|
118 |
+
}]
|
119 |
+
return messages
|
120 |
+
|
121 |
+
system = 'You are an audio deep-thinking model. Upon receiving a question, please respond in two parts: <THINK> and <RESPONSE>. The <THINK> section should be further divided into four parts: <PLANNING>, <CAPTION>, <REASONING>, and <SUMMARY>.'
|
122 |
+
infer_backend = 'pt'
|
123 |
+
model = 'qwen2_audio'
|
124 |
+
last_model_checkpoint = "" #Please replace it with the path to checkpoint
|
125 |
+
engine = PtEngine(last_model_checkpoint, max_batch_size=64, model_type = model)
|
126 |
+
|
127 |
+
def audioreasoner_gen(audiopath, prompt):
|
128 |
+
return infer_stream(engine, InferRequest(messages=get_message(audiopath, prompt)))
|
129 |
+
|
130 |
+
def main():
|
131 |
+
#Please replace it with your test aduio
|
132 |
+
audiopath = "assets/test.wav"
|
133 |
+
#Please replace it with your questions about the test aduio
|
134 |
+
prompt = "Which of the following best describes the rhythmic feel and time signature of the song?"
|
135 |
+
audioreasoner_gen(audiopath, prompt)
|
136 |
+
|
137 |
+
if __name__ == '__main__':
|
138 |
+
main()
|
139 |
+
```
|
140 |
+
|
141 |
+
**Local test**
|
142 |
+
|
143 |
+
```sh
|
144 |
+
conda activate Audio-Reasoner
|
145 |
+
cd Audio-Reasoner
|
146 |
+
# test run the preset audio samples and questions
|
147 |
+
python inference.py
|
148 |
+
```
|
149 |
+
|
150 |
+
## FAQ
|
151 |
+
|
152 |
+
**1. What kind of audio can Audio - Reasoner understand and what kind of thinking does it perform?**
|
153 |
+
Audio - Reasoner can understand various types of audio, including sound, music, and speech. It conducts in - depth thinking in four parts: **planning, caption, reasoning, and summary**.
|
154 |
+
|
155 |
+
**2. Why is transformers installed after 'ms-swift' in the environment configuration?**
|
156 |
+
The version of transformers has a significant impact on the performance of the model. We have tested that version `transformers==4.49.1` is one of the suitable versions. Installing ms-swift first may ensure a more stable environment for the subsequent installation of transformers to avoid potential version conflicts that could affect the model's performance.
|
157 |
+
|
158 |
+
## More Cases
|
159 |
+
<p align="center">
|
160 |
+
<img src="assets\figure2-samples.png" width="90%"/>
|
161 |
+
</p>
|
162 |
+
|
163 |
+
|
164 |
+
## Contact
|
165 |
+
|
166 |
+
If you have any questions, please feel free to contact us via `[email protected]`.
|
167 |
+
|
168 |
+
## Citation
|
169 |
+
Please cite our paper if you find our model and detaset useful. Thanks!
|
170 |
+
```
|
171 |
+
@misc{xie2025audioreasonerimprovingreasoningcapability,
|
172 |
+
title={Audio-Reasoner: Improving Reasoning Capability in Large Audio Language Models},
|
173 |
+
author={Zhifei Xie and Mingbao Lin and Zihang Liu and Pengcheng Wu and Shuicheng Yan and Chunyan Miao},
|
174 |
+
year={2025},
|
175 |
+
eprint={2503.02318},
|
176 |
+
archivePrefix={arXiv},
|
177 |
+
primaryClass={cs.SD},
|
178 |
+
url={https://arxiv.org/abs/2503.02318},
|
179 |
+
}
|
180 |
+
```
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
## Star History
|
185 |
+
|
186 |
+
[]([https://star-history.com/#xzf-thu/Audio-Reasoner&Date](https://star-history.com/#xzf-thu/Audio-Reasoner&Timeline))
|