Add files using upload-large-folder tool
Browse files- .gitattributes +1 -0
- added_tokens.json +24 -0
- args.json +357 -0
- config.json +30 -0
- generation_config.json +14 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +346 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +208 -0
- trainer_state.json +1715 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +760 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
args.json
ADDED
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": "Qwen/Qwen2.5-7B-Instruct",
|
3 |
+
"model_type": "qwen2_5",
|
4 |
+
"model_revision": null,
|
5 |
+
"task_type": "causal_lm",
|
6 |
+
"torch_dtype": "bfloat16",
|
7 |
+
"attn_impl": null,
|
8 |
+
"num_labels": null,
|
9 |
+
"rope_scaling": null,
|
10 |
+
"device_map": null,
|
11 |
+
"max_memory": {},
|
12 |
+
"local_repo_path": null,
|
13 |
+
"template": "qwen2_5",
|
14 |
+
"system": "You are one of the executors of an AI system that follows a systematic long thinking process to arrive at the precise and accurate answer to a math question specified within <Question> and </Question> tags. The system consists of a planner and multiple executors that can run in parallel. The solution is generated over multiple phases. At each phase, the planner thinks out loud and plans what needs to be done next to solve the question. It identifies tasks that can be executed in parallel and creates prompts which the executors need to follow to carry out the plan. The results from the executors are fed back into the planner to generate plans at the next phase. You will be provided with the math question, the outputs from the planner and executors in the previous phases, and the plan and prompt from the current phase that you need to execute. You need to follow the last mentioned plan and prompt and generate a clear and accurate execution result for it by thinking systematically. Your thoughts may involve detailed considerations such as analyzing the previous steps, verifying the accuracy of the current steps, or refining any errors. Provide your response within <think> and </think> tags. You MUST ONLY carry out the task specified in the prompt. Do NOT go beyond the specified task.",
|
15 |
+
"max_length": 5120,
|
16 |
+
"truncation_strategy": "delete",
|
17 |
+
"max_pixels": null,
|
18 |
+
"tools_prompt": "react_en",
|
19 |
+
"norm_bbox": null,
|
20 |
+
"response_prefix": null,
|
21 |
+
"padding_side": "right",
|
22 |
+
"loss_scale": "default",
|
23 |
+
"sequence_parallel_size": 1,
|
24 |
+
"use_chat_template": true,
|
25 |
+
"template_backend": "swift",
|
26 |
+
"dataset": [
|
27 |
+
"emilbiju/Execution-Data-Math:math"
|
28 |
+
],
|
29 |
+
"val_dataset": [],
|
30 |
+
"split_dataset_ratio": 0.01,
|
31 |
+
"data_seed": 42,
|
32 |
+
"dataset_num_proc": 1,
|
33 |
+
"streaming": false,
|
34 |
+
"enable_cache": false,
|
35 |
+
"download_mode": "reuse_dataset_if_exists",
|
36 |
+
"columns": {},
|
37 |
+
"strict": false,
|
38 |
+
"remove_unused_columns": true,
|
39 |
+
"model_name": [
|
40 |
+
null,
|
41 |
+
null
|
42 |
+
],
|
43 |
+
"model_author": [
|
44 |
+
null,
|
45 |
+
null
|
46 |
+
],
|
47 |
+
"custom_dataset_info": [],
|
48 |
+
"quant_method": null,
|
49 |
+
"quant_bits": 4,
|
50 |
+
"hqq_axis": null,
|
51 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
52 |
+
"bnb_4bit_quant_type": "nf4",
|
53 |
+
"bnb_4bit_use_double_quant": true,
|
54 |
+
"bnb_4bit_quant_storage": "bfloat16",
|
55 |
+
"max_new_tokens": 64,
|
56 |
+
"temperature": 0.0,
|
57 |
+
"top_k": null,
|
58 |
+
"top_p": null,
|
59 |
+
"repetition_penalty": null,
|
60 |
+
"num_beams": 1,
|
61 |
+
"stream": false,
|
62 |
+
"stop_words": [],
|
63 |
+
"logprobs": false,
|
64 |
+
"top_logprobs": null,
|
65 |
+
"ckpt_dir": null,
|
66 |
+
"load_dataset_config": null,
|
67 |
+
"lora_modules": [],
|
68 |
+
"tuner_backend": "peft",
|
69 |
+
"train_type": "full",
|
70 |
+
"adapters": [],
|
71 |
+
"external_plugins": [],
|
72 |
+
"seed": 42,
|
73 |
+
"model_kwargs": {},
|
74 |
+
"load_args": false,
|
75 |
+
"load_data_args": false,
|
76 |
+
"use_hf": true,
|
77 |
+
"hub_token": null,
|
78 |
+
"custom_register_path": [],
|
79 |
+
"ignore_args_error": false,
|
80 |
+
"use_swift_lora": false,
|
81 |
+
"output_dir": "/home/ubuntu/output/v0-20250315-052746",
|
82 |
+
"overwrite_output_dir": false,
|
83 |
+
"do_train": false,
|
84 |
+
"do_eval": false,
|
85 |
+
"do_predict": false,
|
86 |
+
"eval_strategy": "steps",
|
87 |
+
"prediction_loss_only": false,
|
88 |
+
"per_device_train_batch_size": 1,
|
89 |
+
"per_device_eval_batch_size": 1,
|
90 |
+
"per_gpu_train_batch_size": null,
|
91 |
+
"per_gpu_eval_batch_size": null,
|
92 |
+
"gradient_accumulation_steps": 4,
|
93 |
+
"eval_accumulation_steps": null,
|
94 |
+
"eval_delay": 0,
|
95 |
+
"torch_empty_cache_steps": null,
|
96 |
+
"learning_rate": 1e-05,
|
97 |
+
"weight_decay": 0.1,
|
98 |
+
"adam_beta1": 0.9,
|
99 |
+
"adam_beta2": 0.999,
|
100 |
+
"adam_epsilon": 1e-08,
|
101 |
+
"max_grad_norm": 1.0,
|
102 |
+
"num_train_epochs": 3.0,
|
103 |
+
"max_steps": -1,
|
104 |
+
"lr_scheduler_type": "cosine",
|
105 |
+
"lr_scheduler_kwargs": null,
|
106 |
+
"warmup_ratio": 0.05,
|
107 |
+
"warmup_steps": 0,
|
108 |
+
"log_level": "passive",
|
109 |
+
"log_level_replica": "warning",
|
110 |
+
"log_on_each_node": true,
|
111 |
+
"logging_dir": "/home/ubuntu/output/v0-20250315-052746/runs",
|
112 |
+
"logging_strategy": "steps",
|
113 |
+
"logging_first_step": true,
|
114 |
+
"logging_steps": 5,
|
115 |
+
"logging_nan_inf_filter": true,
|
116 |
+
"save_strategy": "steps",
|
117 |
+
"save_steps": 100.0,
|
118 |
+
"save_total_limit": 5,
|
119 |
+
"save_safetensors": true,
|
120 |
+
"save_on_each_node": false,
|
121 |
+
"save_only_model": false,
|
122 |
+
"restore_callback_states_from_checkpoint": false,
|
123 |
+
"no_cuda": false,
|
124 |
+
"use_cpu": false,
|
125 |
+
"use_mps_device": false,
|
126 |
+
"jit_mode_eval": false,
|
127 |
+
"use_ipex": false,
|
128 |
+
"bf16": true,
|
129 |
+
"fp16": false,
|
130 |
+
"fp16_opt_level": "O1",
|
131 |
+
"half_precision_backend": "auto",
|
132 |
+
"bf16_full_eval": false,
|
133 |
+
"fp16_full_eval": false,
|
134 |
+
"tf32": null,
|
135 |
+
"local_rank": 0,
|
136 |
+
"ddp_backend": null,
|
137 |
+
"tpu_num_cores": null,
|
138 |
+
"tpu_metrics_debug": false,
|
139 |
+
"debug": null,
|
140 |
+
"dataloader_drop_last": false,
|
141 |
+
"eval_steps": 100.0,
|
142 |
+
"dataloader_num_workers": 4,
|
143 |
+
"dataloader_prefetch_factor": null,
|
144 |
+
"past_index": -1,
|
145 |
+
"run_name": null,
|
146 |
+
"disable_tqdm": null,
|
147 |
+
"label_names": null,
|
148 |
+
"load_best_model_at_end": false,
|
149 |
+
"metric_for_best_model": "loss",
|
150 |
+
"greater_is_better": false,
|
151 |
+
"ignore_data_skip": false,
|
152 |
+
"fsdp": "",
|
153 |
+
"fsdp_min_num_params": 0,
|
154 |
+
"fsdp_config": null,
|
155 |
+
"fsdp_transformer_layer_cls_to_wrap": null,
|
156 |
+
"accelerator_config": {
|
157 |
+
"dispatch_batches": false
|
158 |
+
},
|
159 |
+
"deepspeed": {
|
160 |
+
"fp16": {
|
161 |
+
"enabled": "auto",
|
162 |
+
"loss_scale": 0,
|
163 |
+
"loss_scale_window": 1000,
|
164 |
+
"initial_scale_power": 16,
|
165 |
+
"hysteresis": 2,
|
166 |
+
"min_loss_scale": 1
|
167 |
+
},
|
168 |
+
"bf16": {
|
169 |
+
"enabled": "auto"
|
170 |
+
},
|
171 |
+
"zero_optimization": {
|
172 |
+
"stage": 3,
|
173 |
+
"offload_optimizer": {
|
174 |
+
"device": "none",
|
175 |
+
"pin_memory": true
|
176 |
+
},
|
177 |
+
"offload_param": {
|
178 |
+
"device": "none",
|
179 |
+
"pin_memory": true
|
180 |
+
},
|
181 |
+
"overlap_comm": true,
|
182 |
+
"contiguous_gradients": true,
|
183 |
+
"sub_group_size": 1000000000.0,
|
184 |
+
"reduce_bucket_size": "auto",
|
185 |
+
"zero_quantized_weights": false,
|
186 |
+
"zero_quantized_gradients": false,
|
187 |
+
"stage3_prefetch_bucket_size": "auto",
|
188 |
+
"stage3_param_persistence_threshold": "auto",
|
189 |
+
"stage3_max_live_parameters": 1000000000.0,
|
190 |
+
"stage3_max_reuse_distance": 1000000000.0,
|
191 |
+
"stage3_gather_16bit_weights_on_model_save": true
|
192 |
+
},
|
193 |
+
"gradient_accumulation_steps": "auto",
|
194 |
+
"gradient_clipping": "auto",
|
195 |
+
"steps_per_print": 2000,
|
196 |
+
"train_batch_size": "auto",
|
197 |
+
"train_micro_batch_size_per_gpu": "auto",
|
198 |
+
"wall_clock_breakdown": false
|
199 |
+
},
|
200 |
+
"label_smoothing_factor": 0.0,
|
201 |
+
"optim": "adamw_torch",
|
202 |
+
"optim_args": null,
|
203 |
+
"adafactor": false,
|
204 |
+
"group_by_length": false,
|
205 |
+
"length_column_name": "length",
|
206 |
+
"report_to": [
|
207 |
+
"tensorboard"
|
208 |
+
],
|
209 |
+
"ddp_find_unused_parameters": null,
|
210 |
+
"ddp_bucket_cap_mb": null,
|
211 |
+
"ddp_broadcast_buffers": null,
|
212 |
+
"dataloader_pin_memory": true,
|
213 |
+
"dataloader_persistent_workers": false,
|
214 |
+
"skip_memory_metrics": true,
|
215 |
+
"use_legacy_prediction_loop": false,
|
216 |
+
"push_to_hub": false,
|
217 |
+
"resume_from_checkpoint": null,
|
218 |
+
"hub_model_id": null,
|
219 |
+
"hub_strategy": "every_save",
|
220 |
+
"hub_private_repo": null,
|
221 |
+
"hub_always_push": false,
|
222 |
+
"gradient_checkpointing": true,
|
223 |
+
"gradient_checkpointing_kwargs": null,
|
224 |
+
"include_inputs_for_metrics": false,
|
225 |
+
"include_for_metrics": [],
|
226 |
+
"eval_do_concat_batches": true,
|
227 |
+
"fp16_backend": "auto",
|
228 |
+
"evaluation_strategy": "steps",
|
229 |
+
"push_to_hub_model_id": null,
|
230 |
+
"push_to_hub_organization": null,
|
231 |
+
"push_to_hub_token": null,
|
232 |
+
"mp_parameters": "",
|
233 |
+
"auto_find_batch_size": false,
|
234 |
+
"full_determinism": false,
|
235 |
+
"torchdynamo": null,
|
236 |
+
"ray_scope": "last",
|
237 |
+
"ddp_timeout": 1800,
|
238 |
+
"torch_compile": false,
|
239 |
+
"torch_compile_backend": null,
|
240 |
+
"torch_compile_mode": null,
|
241 |
+
"dispatch_batches": null,
|
242 |
+
"split_batches": null,
|
243 |
+
"include_tokens_per_second": false,
|
244 |
+
"include_num_input_tokens_seen": false,
|
245 |
+
"neftune_noise_alpha": null,
|
246 |
+
"optim_target_modules": null,
|
247 |
+
"batch_eval_metrics": false,
|
248 |
+
"eval_on_start": false,
|
249 |
+
"use_liger_kernel": false,
|
250 |
+
"eval_use_gather_object": false,
|
251 |
+
"average_tokens_across_devices": false,
|
252 |
+
"sortish_sampler": false,
|
253 |
+
"predict_with_generate": false,
|
254 |
+
"generation_max_length": null,
|
255 |
+
"generation_num_beams": null,
|
256 |
+
"generation_config": null,
|
257 |
+
"freeze_parameters": [],
|
258 |
+
"freeze_parameters_ratio": 0.0,
|
259 |
+
"trainable_parameters": [],
|
260 |
+
"freeze_llm": false,
|
261 |
+
"freeze_vit": true,
|
262 |
+
"freeze_aligner": true,
|
263 |
+
"target_modules": [
|
264 |
+
"all-linear"
|
265 |
+
],
|
266 |
+
"target_regex": null,
|
267 |
+
"modules_to_save": [],
|
268 |
+
"lora_rank": 8,
|
269 |
+
"lora_alpha": 32,
|
270 |
+
"lora_dropout": 0.05,
|
271 |
+
"lora_bias": "none",
|
272 |
+
"lora_dtype": null,
|
273 |
+
"lorap_lr_ratio": null,
|
274 |
+
"use_rslora": false,
|
275 |
+
"use_dora": false,
|
276 |
+
"lora_ga_batch_size": 2,
|
277 |
+
"lora_ga_iters": 2,
|
278 |
+
"lora_ga_max_length": 1024,
|
279 |
+
"lora_ga_direction": "ArB2r",
|
280 |
+
"lora_ga_scale": "stable",
|
281 |
+
"lora_ga_stable_gamma": 16,
|
282 |
+
"init_weights": true,
|
283 |
+
"fourier_n_frequency": 2000,
|
284 |
+
"fourier_scaling": 300.0,
|
285 |
+
"boft_block_size": 4,
|
286 |
+
"boft_block_num": 0,
|
287 |
+
"boft_n_butterfly_factor": 1,
|
288 |
+
"boft_dropout": 0.0,
|
289 |
+
"vera_rank": 256,
|
290 |
+
"vera_projection_prng_key": 0,
|
291 |
+
"vera_dropout": 0.0,
|
292 |
+
"vera_d_initial": 0.1,
|
293 |
+
"adapter_act": "gelu",
|
294 |
+
"adapter_length": 128,
|
295 |
+
"use_galore": false,
|
296 |
+
"galore_target_modules": null,
|
297 |
+
"galore_rank": 128,
|
298 |
+
"galore_update_proj_gap": 50,
|
299 |
+
"galore_scale": 1.0,
|
300 |
+
"galore_proj_type": "std",
|
301 |
+
"galore_optim_per_parameter": false,
|
302 |
+
"galore_with_embedding": false,
|
303 |
+
"galore_quantization": false,
|
304 |
+
"galore_proj_quant": false,
|
305 |
+
"galore_proj_bits": 4,
|
306 |
+
"galore_proj_group_size": 256,
|
307 |
+
"galore_cos_threshold": 0.4,
|
308 |
+
"galore_gamma_proj": 2,
|
309 |
+
"galore_queue_size": 5,
|
310 |
+
"adalora_target_r": 8,
|
311 |
+
"adalora_init_r": 12,
|
312 |
+
"adalora_tinit": 0,
|
313 |
+
"adalora_tfinal": 0,
|
314 |
+
"adalora_deltaT": 1,
|
315 |
+
"adalora_beta1": 0.85,
|
316 |
+
"adalora_beta2": 0.85,
|
317 |
+
"adalora_orth_reg_weight": 0.5,
|
318 |
+
"llamapro_num_new_blocks": 4,
|
319 |
+
"llamapro_num_groups": null,
|
320 |
+
"lisa_activated_layers": 0,
|
321 |
+
"lisa_step_interval": 20,
|
322 |
+
"reft_layer_key": null,
|
323 |
+
"reft_layers": null,
|
324 |
+
"reft_rank": 4,
|
325 |
+
"reft_intervention_type": "LoreftIntervention",
|
326 |
+
"reft_args": null,
|
327 |
+
"use_liger": false,
|
328 |
+
"model_layer_cls_name": null,
|
329 |
+
"metric_warmup_step": 0,
|
330 |
+
"fsdp_num": 1,
|
331 |
+
"acc_steps": 1,
|
332 |
+
"swanlab_token": null,
|
333 |
+
"swanlab_project": null,
|
334 |
+
"swanlab_workspace": null,
|
335 |
+
"swanlab_exp_name": null,
|
336 |
+
"swanlab_mode": "cloud",
|
337 |
+
"add_version": true,
|
338 |
+
"resume_only_model": false,
|
339 |
+
"check_model": true,
|
340 |
+
"create_checkpoint_symlink": false,
|
341 |
+
"packing": false,
|
342 |
+
"lazy_tokenize": false,
|
343 |
+
"loss_type": null,
|
344 |
+
"optimizer": null,
|
345 |
+
"metric": null,
|
346 |
+
"acc_strategy": "token",
|
347 |
+
"zero_hpz_partition_size": null,
|
348 |
+
"rank": 0,
|
349 |
+
"global_world_size": 8,
|
350 |
+
"local_world_size": 8,
|
351 |
+
"model_suffix": "Qwen2.5-7B-Instruct",
|
352 |
+
"model_info": "ModelInfo(model_type='qwen2_5', model_dir='/home/ubuntu/.cache/huggingface/hub/models--Qwen--Qwen2.5-7B-Instruct/snapshots/a09a35458c702b33eeacc393d103063234e8bc28', torch_dtype=torch.bfloat16, max_model_len=32768, quant_method=None, quant_bits=None, rope_scaling=None, config=None, task_type='causal_lm', num_labels=None)",
|
353 |
+
"model_meta": "ModelMeta(model_type='qwen2_5', model_groups=[ModelGroup(models=[Model(ms_model_id='Qwen/Qwen2.5-0.5B-Instruct', hf_model_id='Qwen/Qwen2.5-0.5B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-1.5B-Instruct', hf_model_id='Qwen/Qwen2.5-1.5B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-3B-Instruct', hf_model_id='Qwen/Qwen2.5-3B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-7B-Instruct', hf_model_id='Qwen/Qwen2.5-7B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-14B-Instruct', hf_model_id='Qwen/Qwen2.5-14B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-32B-Instruct', hf_model_id='Qwen/Qwen2.5-32B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-72B-Instruct', hf_model_id='Qwen/Qwen2.5-72B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-0.5B', hf_model_id='Qwen/Qwen2.5-0.5B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-1.5B', hf_model_id='Qwen/Qwen2.5-1.5B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-3B', hf_model_id='Qwen/Qwen2.5-3B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-7B', hf_model_id='Qwen/Qwen2.5-7B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-14B', hf_model_id='Qwen/Qwen2.5-14B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-32B', hf_model_id='Qwen/Qwen2.5-32B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-72B', hf_model_id='Qwen/Qwen2.5-72B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-0.5B-Instruct-GPTQ-Int4', hf_model_id='Qwen/Qwen2.5-0.5B-Instruct-GPTQ-Int4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-1.5B-Instruct-GPTQ-Int4', hf_model_id='Qwen/Qwen2.5-1.5B-Instruct-GPTQ-Int4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-3B-Instruct-GPTQ-Int4', hf_model_id='Qwen/Qwen2.5-3B-Instruct-GPTQ-Int4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-7B-Instruct-GPTQ-Int4', hf_model_id='Qwen/Qwen2.5-7B-Instruct-GPTQ-Int4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-14B-Instruct-GPTQ-Int4', hf_model_id='Qwen/Qwen2.5-14B-Instruct-GPTQ-Int4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-32B-Instruct-GPTQ-Int4', hf_model_id='Qwen/Qwen2.5-32B-Instruct-GPTQ-Int4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-72B-Instruct-GPTQ-Int4', hf_model_id='Qwen/Qwen2.5-72B-Instruct-GPTQ-Int4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-0.5B-Instruct-GPTQ-Int8', hf_model_id='Qwen/Qwen2.5-0.5B-Instruct-GPTQ-Int8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-1.5B-Instruct-GPTQ-Int8', hf_model_id='Qwen/Qwen2.5-1.5B-Instruct-GPTQ-Int8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-3B-Instruct-GPTQ-Int8', hf_model_id='Qwen/Qwen2.5-3B-Instruct-GPTQ-Int8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-7B-Instruct-GPTQ-Int8', hf_model_id='Qwen/Qwen2.5-7B-Instruct-GPTQ-Int8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-14B-Instruct-GPTQ-Int8', hf_model_id='Qwen/Qwen2.5-14B-Instruct-GPTQ-Int8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-32B-Instruct-GPTQ-Int8', hf_model_id='Qwen/Qwen2.5-32B-Instruct-GPTQ-Int8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-72B-Instruct-GPTQ-Int8', hf_model_id='Qwen/Qwen2.5-72B-Instruct-GPTQ-Int8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-0.5B-Instruct-AWQ', hf_model_id='Qwen/Qwen2.5-0.5B-Instruct-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-1.5B-Instruct-AWQ', hf_model_id='Qwen/Qwen2.5-1.5B-Instruct-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-3B-Instruct-AWQ', hf_model_id='Qwen/Qwen2.5-3B-Instruct-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-7B-Instruct-AWQ', hf_model_id='Qwen/Qwen2.5-7B-Instruct-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-14B-Instruct-AWQ', hf_model_id='Qwen/Qwen2.5-14B-Instruct-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-32B-Instruct-AWQ', hf_model_id='Qwen/Qwen2.5-32B-Instruct-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-72B-Instruct-AWQ', hf_model_id='Qwen/Qwen2.5-72B-Instruct-AWQ', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[]), ModelGroup(models=[Model(ms_model_id='Qwen/Qwen2.5-Coder-0.5B-Instruct', hf_model_id='Qwen/Qwen2.5-Coder-0.5B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-1.5B-Instruct', hf_model_id='Qwen/Qwen2.5-Coder-1.5B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-3B-Instruct', hf_model_id='Qwen/Qwen2.5-Coder-3B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-7B-Instruct', hf_model_id='Qwen/Qwen2.5-Coder-7B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-14B-Instruct', hf_model_id='Qwen/Qwen2.5-Coder-14B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-32B-Instruct', hf_model_id='Qwen/Qwen2.5-Coder-32B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-0.5B', hf_model_id='Qwen/Qwen2.5-Coder-0.5B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-1.5B', hf_model_id='Qwen/Qwen2.5-Coder-1.5B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-3B', hf_model_id='Qwen/Qwen2.5-Coder-3B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-7B', hf_model_id='Qwen/Qwen2.5-Coder-7B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-14B', hf_model_id='Qwen/Qwen2.5-Coder-14B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-32B', hf_model_id='Qwen/Qwen2.5-Coder-32B', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-0.5B-Instruct-AWQ', hf_model_id='Qwen/Qwen2.5-Coder-0.5B-Instruct-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-1.5B-Instruct-AWQ', hf_model_id='Qwen/Qwen2.5-Coder-1.5B-Instruct-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-3B-Instruct-AWQ', hf_model_id='Qwen/Qwen2.5-Coder-3B-Instruct-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-7B-Instruct-AWQ', hf_model_id='Qwen/Qwen2.5-Coder-7B-Instruct-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-14B-Instruct-AWQ', hf_model_id='Qwen/Qwen2.5-Coder-14B-Instruct-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-32B-Instruct-AWQ', hf_model_id='Qwen/Qwen2.5-Coder-32B-Instruct-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-0.5B-Instruct-GPTQ-Int4', hf_model_id='Qwen/Qwen2.5-Coder-0.5B-Instruct-GPTQ-Int4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-0.5B-Instruct-GPTQ-Int8', hf_model_id='Qwen/Qwen2.5-Coder-0.5B-Instruct-GPTQ-Int8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-1.5B-Instruct-GPTQ-Int4', hf_model_id='Qwen/Qwen2.5-Coder-1.5B-Instruct-GPTQ-Int4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-1.5B-Instruct-GPTQ-Int8', hf_model_id='Qwen/Qwen2.5-Coder-1.5B-Instruct-GPTQ-Int8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-3B-Instruct-GPTQ-Int4', hf_model_id='Qwen/Qwen2.5-Coder-3B-Instruct-GPTQ-Int4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-3B-Instruct-GPTQ-Int8', hf_model_id='Qwen/Qwen2.5-Coder-3B-Instruct-GPTQ-Int8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-7B-Instruct-GPTQ-Int4', hf_model_id='Qwen/Qwen2.5-Coder-7B-Instruct-GPTQ-Int4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-7B-Instruct-GPTQ-Int8', hf_model_id='Qwen/Qwen2.5-Coder-7B-Instruct-GPTQ-Int8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-14B-Instruct-GPTQ-Int4', hf_model_id='Qwen/Qwen2.5-Coder-14B-Instruct-GPTQ-Int4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-14B-Instruct-GPTQ-Int8', hf_model_id='Qwen/Qwen2.5-Coder-14B-Instruct-GPTQ-Int8', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-32B-Instruct-GPTQ-Int4', hf_model_id='Qwen/Qwen2.5-Coder-32B-Instruct-GPTQ-Int4', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-Coder-32B-Instruct-GPTQ-Int8', hf_model_id='Qwen/Qwen2.5-Coder-32B-Instruct-GPTQ-Int8', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=['coding'])], template='qwen2_5', get_function=<function get_model_tokenizer_with_flash_attn at 0x7bcae537eb60>, model_arch='llama', architectures=['Qwen2ForCausalLM'], additional_saved_files=[], torch_dtype=None, is_multimodal=False, is_reward=False, task_type=None, ignore_patterns=['*.zip', '*.gguf', '*.pth', '*.pt', 'consolidated*', 'onnx/*', '*.safetensors.md', '*.msgpack', '*.onnx', '*.ot', '*.h5', '*.bin', '*.safetensors'], requires=['transformers>=4.37'], tags=[])",
|
354 |
+
"model_dir": "/home/ubuntu/.cache/huggingface/hub/models--Qwen--Qwen2.5-7B-Instruct/snapshots/a09a35458c702b33eeacc393d103063234e8bc28",
|
355 |
+
"hub": "<class 'swift.hub.hub.HFHub'>",
|
356 |
+
"training_args": "Seq2SeqTrainingArguments(output_dir='/home/ubuntu/output/v0-20250315-052746', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=1, per_device_eval_batch_size=1, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=4, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=1e-05, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=3.0, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs=None, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/home/ubuntu/output/v0-20250315-052746/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=5, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.STEPS: 'steps'>, save_steps=100, save_total_limit=5, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=True, fp16=False, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=100, dataloader_num_workers=4, dataloader_prefetch_factor=None, past_index=-1, run_name='/home/ubuntu/output/v0-20250315-052746', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed={'fp16': {'enabled': 'auto', 'loss_scale': 0, 'loss_scale_window': 1000, 'initial_scale_power': 16, 'hysteresis': 2, 'min_loss_scale': 1}, 'bf16': {'enabled': 'auto'}, 'zero_optimization': {'stage': 3, 'offload_optimizer': {'device': 'none', 'pin_memory': True}, 'offload_param': {'device': 'none', 'pin_memory': True}, 'overlap_comm': True, 'contiguous_gradients': True, 'sub_group_size': 1000000000.0, 'reduce_bucket_size': 'auto', 'zero_quantized_weights': False, 'zero_quantized_gradients': False, 'stage3_prefetch_bucket_size': 'auto', 'stage3_param_persistence_threshold': 'auto', 'stage3_max_live_parameters': 1000000000.0, 'stage3_max_reuse_distance': 1000000000.0, 'stage3_gather_16bit_weights_on_model_save': True}, 'gradient_accumulation_steps': 'auto', 'gradient_clipping': 'auto', 'steps_per_print': 2000, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'wall_clock_breakdown': False}, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['tensorboard'], ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=None, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', evaluation_strategy='steps', push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=1800, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, dispatch_batches=None, split_batches=None, include_tokens_per_second=None, include_num_input_tokens_seen=None, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=False, eval_use_gather_object=False, average_tokens_across_devices=None, sortish_sampler=False, predict_with_generate=False, generation_max_length=None, generation_num_beams=None, generation_config=None, acc_strategy='token', sequence_parallel_size=1, check_model=True, train_sampler_random=True, is_encoder_decoder=False, metric_warmup_step=0, train_dataset_sample=-1, fsdp_num=1, acc_steps=1, train_type='full', optimizer=None, local_repo_path=None, galore_config=None)"
|
357 |
+
}
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/ubuntu/.cache/huggingface/hub/models--Qwen--Qwen2.5-7B-Instruct/snapshots/a09a35458c702b33eeacc393d103063234e8bc28",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 3584,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 18944,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"max_window_layers": 28,
|
15 |
+
"model_type": "qwen2",
|
16 |
+
"num_attention_heads": 28,
|
17 |
+
"num_hidden_layers": 28,
|
18 |
+
"num_key_value_heads": 4,
|
19 |
+
"pad_token_id": 151643,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"rope_scaling": null,
|
22 |
+
"rope_theta": 1000000.0,
|
23 |
+
"sliding_window": 131072,
|
24 |
+
"tie_word_embeddings": false,
|
25 |
+
"torch_dtype": "bfloat16",
|
26 |
+
"transformers_version": "4.49.0",
|
27 |
+
"use_cache": false,
|
28 |
+
"use_sliding_window": false,
|
29 |
+
"vocab_size": 152064
|
30 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 151643,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": [
|
5 |
+
151645,
|
6 |
+
151643
|
7 |
+
],
|
8 |
+
"pad_token_id": 151643,
|
9 |
+
"repetition_penalty": 1.05,
|
10 |
+
"temperature": 0.7,
|
11 |
+
"top_k": 20,
|
12 |
+
"top_p": 0.8,
|
13 |
+
"transformers_version": "4.49.0"
|
14 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step800
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33c684cb62b22c3bd0b31cf3e39596278a2b2870de276e2d4a045522e8b969f7
|
3 |
+
size 4877660776
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d729b8098b3d231f181b2adffb3509ece0372bcaa6a69f771cc562a4d3d3cde
|
3 |
+
size 4932751008
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9c12be66b587ae36c7c729d9d920161577377891ca580cfe67b564653f5ca95
|
3 |
+
size 4330865200
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b38eb226a4e2c8b01958929346cabe5eff22ce283e254f349565e176978d8496
|
3 |
+
size 1089994880
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15231233024
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
345 |
+
}
|
346 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae9162e03c562553a5d9d13120f544d3c47ea71bb39aa44e18253675e17ed4a4
|
3 |
+
size 15984
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4809456871b3a40c8db7e0926a9db11b01149a1d483fb29b16fc69dabaf36c6f
|
3 |
+
size 15984
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4bb6bcf25ff148b74eea7dd4895fc42e9433538fff5d75f0d2ae6cb0c2fdadf0
|
3 |
+
size 15984
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f00ea04cd1a52c539d9cc948ac8a04676d6b99702acd09149565f781806f63f
|
3 |
+
size 15984
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5571fb2fc1b413792b01ac691c759786855573992bab1d14875faccdaf8c881e
|
3 |
+
size 15984
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59019ba23ead9c15851cb4349397254458ce50ea3c2987090404f4f3842c6d8f
|
3 |
+
size 15984
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45fdffda57fda4a555da7a5de6fc6ec7324e0dae048b92519af6c4f6a1bc7412
|
3 |
+
size 15984
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62fb2c13e63aba83c4505fae1639f79a33853d8f1bebe20cecb73bf53c8e7c46
|
3 |
+
size 15984
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2cbeaea61b81590fe73403f785c0568861f88d2c83ede8c36e87bd0f862ba83d
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
|
3 |
+
size 11421896
|
tokenizer_config.json
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"model_max_length": 131072,
|
204 |
+
"pad_token": "<|endoftext|>",
|
205 |
+
"split_special_tokens": false,
|
206 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
207 |
+
"unk_token": null
|
208 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1715 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.40588063,
|
3 |
+
"best_model_checkpoint": "/home/ubuntu/output/v0-20250315-052746/checkpoint-800",
|
4 |
+
"epoch": 0.9549388242315726,
|
5 |
+
"eval_steps": 100,
|
6 |
+
"global_step": 800,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.001193673530289466,
|
13 |
+
"grad_norm": 22.298568401591066,
|
14 |
+
"learning_rate": 7.936507936507937e-08,
|
15 |
+
"loss": 1.0442615747451782,
|
16 |
+
"memory(GiB)": 30.7,
|
17 |
+
"step": 1,
|
18 |
+
"token_acc": 0.7699836867862969,
|
19 |
+
"train_speed(iter/s)": 0.093757
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"epoch": 0.005968367651447329,
|
23 |
+
"grad_norm": 19.63376949197587,
|
24 |
+
"learning_rate": 3.9682539682539683e-07,
|
25 |
+
"loss": 0.9844925403594971,
|
26 |
+
"memory(GiB)": 36.92,
|
27 |
+
"step": 5,
|
28 |
+
"token_acc": 0.7549315386400557,
|
29 |
+
"train_speed(iter/s)": 0.149789
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"epoch": 0.011936735302894658,
|
33 |
+
"grad_norm": 16.540823173599176,
|
34 |
+
"learning_rate": 7.936507936507937e-07,
|
35 |
+
"loss": 0.9816521644592285,
|
36 |
+
"memory(GiB)": 36.92,
|
37 |
+
"step": 10,
|
38 |
+
"token_acc": 0.7844917012448133,
|
39 |
+
"train_speed(iter/s)": 0.162277
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.017905102954341987,
|
43 |
+
"grad_norm": 7.069008652065498,
|
44 |
+
"learning_rate": 1.1904761904761906e-06,
|
45 |
+
"loss": 0.8435724258422852,
|
46 |
+
"memory(GiB)": 36.92,
|
47 |
+
"step": 15,
|
48 |
+
"token_acc": 0.7823455233291299,
|
49 |
+
"train_speed(iter/s)": 0.176636
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"epoch": 0.023873470605789315,
|
53 |
+
"grad_norm": 5.623338707216517,
|
54 |
+
"learning_rate": 1.5873015873015873e-06,
|
55 |
+
"loss": 0.7347106456756591,
|
56 |
+
"memory(GiB)": 36.92,
|
57 |
+
"step": 20,
|
58 |
+
"token_acc": 0.8210757409440176,
|
59 |
+
"train_speed(iter/s)": 0.177914
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.029841838257236644,
|
63 |
+
"grad_norm": 4.003256651554691,
|
64 |
+
"learning_rate": 1.984126984126984e-06,
|
65 |
+
"loss": 0.654999828338623,
|
66 |
+
"memory(GiB)": 36.92,
|
67 |
+
"step": 25,
|
68 |
+
"token_acc": 0.7765267826680314,
|
69 |
+
"train_speed(iter/s)": 0.183726
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.03581020590868397,
|
73 |
+
"grad_norm": 3.4287088973952624,
|
74 |
+
"learning_rate": 2.380952380952381e-06,
|
75 |
+
"loss": 0.5874819755554199,
|
76 |
+
"memory(GiB)": 36.92,
|
77 |
+
"step": 30,
|
78 |
+
"token_acc": 0.8138706921105098,
|
79 |
+
"train_speed(iter/s)": 0.184018
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.0417785735601313,
|
83 |
+
"grad_norm": 2.8169959397852256,
|
84 |
+
"learning_rate": 2.7777777777777783e-06,
|
85 |
+
"loss": 0.6081454753875732,
|
86 |
+
"memory(GiB)": 36.92,
|
87 |
+
"step": 35,
|
88 |
+
"token_acc": 0.81794500723589,
|
89 |
+
"train_speed(iter/s)": 0.183529
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.04774694121157863,
|
93 |
+
"grad_norm": 3.325157673054176,
|
94 |
+
"learning_rate": 3.1746031746031746e-06,
|
95 |
+
"loss": 0.5828543663024902,
|
96 |
+
"memory(GiB)": 36.92,
|
97 |
+
"step": 40,
|
98 |
+
"token_acc": 0.8394230769230769,
|
99 |
+
"train_speed(iter/s)": 0.184431
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.05371530886302596,
|
103 |
+
"grad_norm": 2.7879997870731166,
|
104 |
+
"learning_rate": 3.5714285714285718e-06,
|
105 |
+
"loss": 0.5575875282287598,
|
106 |
+
"memory(GiB)": 36.92,
|
107 |
+
"step": 45,
|
108 |
+
"token_acc": 0.8293939393939394,
|
109 |
+
"train_speed(iter/s)": 0.187841
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.05968367651447329,
|
113 |
+
"grad_norm": 2.778252157541432,
|
114 |
+
"learning_rate": 3.968253968253968e-06,
|
115 |
+
"loss": 0.5551129341125488,
|
116 |
+
"memory(GiB)": 36.92,
|
117 |
+
"step": 50,
|
118 |
+
"token_acc": 0.8260184559981995,
|
119 |
+
"train_speed(iter/s)": 0.189026
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"epoch": 0.06565204416592062,
|
123 |
+
"grad_norm": 3.0281694802961816,
|
124 |
+
"learning_rate": 4.365079365079366e-06,
|
125 |
+
"loss": 0.5619981765747071,
|
126 |
+
"memory(GiB)": 36.92,
|
127 |
+
"step": 55,
|
128 |
+
"token_acc": 0.8104107766505904,
|
129 |
+
"train_speed(iter/s)": 0.188889
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.07162041181736795,
|
133 |
+
"grad_norm": 3.102265765306523,
|
134 |
+
"learning_rate": 4.761904761904762e-06,
|
135 |
+
"loss": 0.5332321166992188,
|
136 |
+
"memory(GiB)": 36.92,
|
137 |
+
"step": 60,
|
138 |
+
"token_acc": 0.8470640768028578,
|
139 |
+
"train_speed(iter/s)": 0.189797
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"epoch": 0.07758877946881527,
|
143 |
+
"grad_norm": 2.8144373694536444,
|
144 |
+
"learning_rate": 5.15873015873016e-06,
|
145 |
+
"loss": 0.5349865436553956,
|
146 |
+
"memory(GiB)": 36.92,
|
147 |
+
"step": 65,
|
148 |
+
"token_acc": 0.8722838137472284,
|
149 |
+
"train_speed(iter/s)": 0.190181
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.0835571471202626,
|
153 |
+
"grad_norm": 3.337016219899744,
|
154 |
+
"learning_rate": 5.555555555555557e-06,
|
155 |
+
"loss": 0.5452562808990479,
|
156 |
+
"memory(GiB)": 36.92,
|
157 |
+
"step": 70,
|
158 |
+
"token_acc": 0.8432369942196531,
|
159 |
+
"train_speed(iter/s)": 0.189336
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.08952551477170993,
|
163 |
+
"grad_norm": 3.06136632501639,
|
164 |
+
"learning_rate": 5.9523809523809525e-06,
|
165 |
+
"loss": 0.49980897903442384,
|
166 |
+
"memory(GiB)": 36.92,
|
167 |
+
"step": 75,
|
168 |
+
"token_acc": 0.8338361568809468,
|
169 |
+
"train_speed(iter/s)": 0.190084
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 0.09549388242315726,
|
173 |
+
"grad_norm": 2.4877794848384633,
|
174 |
+
"learning_rate": 6.349206349206349e-06,
|
175 |
+
"loss": 0.539669418334961,
|
176 |
+
"memory(GiB)": 36.92,
|
177 |
+
"step": 80,
|
178 |
+
"token_acc": 0.8455654331197023,
|
179 |
+
"train_speed(iter/s)": 0.189397
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.10146225007460459,
|
183 |
+
"grad_norm": 3.221405214526254,
|
184 |
+
"learning_rate": 6.746031746031747e-06,
|
185 |
+
"loss": 0.5160573959350586,
|
186 |
+
"memory(GiB)": 36.92,
|
187 |
+
"step": 85,
|
188 |
+
"token_acc": 0.8462370242214533,
|
189 |
+
"train_speed(iter/s)": 0.190557
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.10743061772605192,
|
193 |
+
"grad_norm": 3.2868066256101085,
|
194 |
+
"learning_rate": 7.1428571428571436e-06,
|
195 |
+
"loss": 0.4913814067840576,
|
196 |
+
"memory(GiB)": 36.92,
|
197 |
+
"step": 90,
|
198 |
+
"token_acc": 0.8452227659026526,
|
199 |
+
"train_speed(iter/s)": 0.190372
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.11339898537749925,
|
203 |
+
"grad_norm": 3.051253318495505,
|
204 |
+
"learning_rate": 7.53968253968254e-06,
|
205 |
+
"loss": 0.49474325180053713,
|
206 |
+
"memory(GiB)": 36.92,
|
207 |
+
"step": 95,
|
208 |
+
"token_acc": 0.8567275747508306,
|
209 |
+
"train_speed(iter/s)": 0.190208
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 0.11936735302894658,
|
213 |
+
"grad_norm": 2.912617922195808,
|
214 |
+
"learning_rate": 7.936507936507936e-06,
|
215 |
+
"loss": 0.4725308418273926,
|
216 |
+
"memory(GiB)": 36.92,
|
217 |
+
"step": 100,
|
218 |
+
"token_acc": 0.8608458390177354,
|
219 |
+
"train_speed(iter/s)": 0.190477
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.11936735302894658,
|
223 |
+
"eval_loss": 0.45056208968162537,
|
224 |
+
"eval_runtime": 10.9299,
|
225 |
+
"eval_samples_per_second": 24.611,
|
226 |
+
"eval_steps_per_second": 3.111,
|
227 |
+
"eval_token_acc": 0.8447598692022433,
|
228 |
+
"step": 100
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 0.12533572068039392,
|
232 |
+
"grad_norm": 2.8012333103883647,
|
233 |
+
"learning_rate": 8.333333333333334e-06,
|
234 |
+
"loss": 0.5016227722167969,
|
235 |
+
"memory(GiB)": 36.92,
|
236 |
+
"step": 105,
|
237 |
+
"token_acc": 0.842248243559719,
|
238 |
+
"train_speed(iter/s)": 0.17126
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"epoch": 0.13130408833184123,
|
242 |
+
"grad_norm": 2.912876340051396,
|
243 |
+
"learning_rate": 8.730158730158731e-06,
|
244 |
+
"loss": 0.518134593963623,
|
245 |
+
"memory(GiB)": 36.92,
|
246 |
+
"step": 110,
|
247 |
+
"token_acc": 0.8509636604384287,
|
248 |
+
"train_speed(iter/s)": 0.172461
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.13727245598328858,
|
252 |
+
"grad_norm": 3.3516293509261117,
|
253 |
+
"learning_rate": 9.126984126984127e-06,
|
254 |
+
"loss": 0.5215555191040039,
|
255 |
+
"memory(GiB)": 36.92,
|
256 |
+
"step": 115,
|
257 |
+
"token_acc": 0.8062340503098797,
|
258 |
+
"train_speed(iter/s)": 0.172888
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"epoch": 0.1432408236347359,
|
262 |
+
"grad_norm": 3.137187651305806,
|
263 |
+
"learning_rate": 9.523809523809525e-06,
|
264 |
+
"loss": 0.4938058853149414,
|
265 |
+
"memory(GiB)": 36.92,
|
266 |
+
"step": 120,
|
267 |
+
"token_acc": 0.8689788053949904,
|
268 |
+
"train_speed(iter/s)": 0.173312
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.14920919128618323,
|
272 |
+
"grad_norm": 2.9778302322354255,
|
273 |
+
"learning_rate": 9.920634920634922e-06,
|
274 |
+
"loss": 0.47763543128967284,
|
275 |
+
"memory(GiB)": 36.92,
|
276 |
+
"step": 125,
|
277 |
+
"token_acc": 0.8223684210526315,
|
278 |
+
"train_speed(iter/s)": 0.173984
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.15517755893763055,
|
282 |
+
"grad_norm": 2.454176368796001,
|
283 |
+
"learning_rate": 9.999930596405254e-06,
|
284 |
+
"loss": 0.5025428771972656,
|
285 |
+
"memory(GiB)": 36.92,
|
286 |
+
"step": 130,
|
287 |
+
"token_acc": 0.8584961515689757,
|
288 |
+
"train_speed(iter/s)": 0.17494
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"epoch": 0.1611459265890779,
|
292 |
+
"grad_norm": 2.308752936530914,
|
293 |
+
"learning_rate": 9.999648647603774e-06,
|
294 |
+
"loss": 0.4561060905456543,
|
295 |
+
"memory(GiB)": 36.92,
|
296 |
+
"step": 135,
|
297 |
+
"token_acc": 0.8763222131814483,
|
298 |
+
"train_speed(iter/s)": 0.175709
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"epoch": 0.1671142942405252,
|
302 |
+
"grad_norm": 3.2296962246861276,
|
303 |
+
"learning_rate": 9.999149828091632e-06,
|
304 |
+
"loss": 0.5205905437469482,
|
305 |
+
"memory(GiB)": 36.92,
|
306 |
+
"step": 140,
|
307 |
+
"token_acc": 0.8126463700234192,
|
308 |
+
"train_speed(iter/s)": 0.176096
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.17308266189197255,
|
312 |
+
"grad_norm": 2.8523931115518915,
|
313 |
+
"learning_rate": 9.998434159506211e-06,
|
314 |
+
"loss": 0.4669060230255127,
|
315 |
+
"memory(GiB)": 36.92,
|
316 |
+
"step": 145,
|
317 |
+
"token_acc": 0.8612167300380228,
|
318 |
+
"train_speed(iter/s)": 0.176748
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.17905102954341987,
|
322 |
+
"grad_norm": 2.689699959591659,
|
323 |
+
"learning_rate": 9.997501672891208e-06,
|
324 |
+
"loss": 0.4870173454284668,
|
325 |
+
"memory(GiB)": 36.92,
|
326 |
+
"step": 150,
|
327 |
+
"token_acc": 0.8250571369208394,
|
328 |
+
"train_speed(iter/s)": 0.177191
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"epoch": 0.1850193971948672,
|
332 |
+
"grad_norm": 2.8278119407117517,
|
333 |
+
"learning_rate": 9.99635240869527e-06,
|
334 |
+
"loss": 0.47814245223999025,
|
335 |
+
"memory(GiB)": 36.92,
|
336 |
+
"step": 155,
|
337 |
+
"token_acc": 0.819718309859155,
|
338 |
+
"train_speed(iter/s)": 0.177751
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.19098776484631452,
|
342 |
+
"grad_norm": 3.0394183749078887,
|
343 |
+
"learning_rate": 9.99498641677025e-06,
|
344 |
+
"loss": 0.5187320232391357,
|
345 |
+
"memory(GiB)": 36.92,
|
346 |
+
"step": 160,
|
347 |
+
"token_acc": 0.8540501094624179,
|
348 |
+
"train_speed(iter/s)": 0.178072
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 0.19695613249776187,
|
352 |
+
"grad_norm": 2.4913040205595696,
|
353 |
+
"learning_rate": 9.993403756369037e-06,
|
354 |
+
"loss": 0.471418571472168,
|
355 |
+
"memory(GiB)": 36.92,
|
356 |
+
"step": 165,
|
357 |
+
"token_acc": 0.8507351108896087,
|
358 |
+
"train_speed(iter/s)": 0.178675
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"epoch": 0.20292450014920918,
|
362 |
+
"grad_norm": 2.5344653445390937,
|
363 |
+
"learning_rate": 9.991604496142997e-06,
|
364 |
+
"loss": 0.5218185901641845,
|
365 |
+
"memory(GiB)": 36.92,
|
366 |
+
"step": 170,
|
367 |
+
"token_acc": 0.8207423580786026,
|
368 |
+
"train_speed(iter/s)": 0.179206
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.20889286780065652,
|
372 |
+
"grad_norm": 3.1475346404756737,
|
373 |
+
"learning_rate": 9.989588714138977e-06,
|
374 |
+
"loss": 0.4809536933898926,
|
375 |
+
"memory(GiB)": 36.92,
|
376 |
+
"step": 175,
|
377 |
+
"token_acc": 0.8179710144927537,
|
378 |
+
"train_speed(iter/s)": 0.179609
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"epoch": 0.21486123545210384,
|
382 |
+
"grad_norm": 2.9443708297446927,
|
383 |
+
"learning_rate": 9.987356497795944e-06,
|
384 |
+
"loss": 0.5137897491455078,
|
385 |
+
"memory(GiB)": 36.92,
|
386 |
+
"step": 180,
|
387 |
+
"token_acc": 0.838412017167382,
|
388 |
+
"train_speed(iter/s)": 0.179743
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.22082960310355118,
|
392 |
+
"grad_norm": 2.3691979165448864,
|
393 |
+
"learning_rate": 9.984907943941164e-06,
|
394 |
+
"loss": 0.47942285537719725,
|
395 |
+
"memory(GiB)": 36.92,
|
396 |
+
"step": 185,
|
397 |
+
"token_acc": 0.8178681677864537,
|
398 |
+
"train_speed(iter/s)": 0.179758
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.2267979707549985,
|
402 |
+
"grad_norm": 2.7655733596568806,
|
403 |
+
"learning_rate": 9.98224315878603e-06,
|
404 |
+
"loss": 0.4850442886352539,
|
405 |
+
"memory(GiB)": 36.92,
|
406 |
+
"step": 190,
|
407 |
+
"token_acc": 0.8557343020238714,
|
408 |
+
"train_speed(iter/s)": 0.180113
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.23276633840644584,
|
412 |
+
"grad_norm": 2.9415771183832837,
|
413 |
+
"learning_rate": 9.979362257921428e-06,
|
414 |
+
"loss": 0.4999836921691895,
|
415 |
+
"memory(GiB)": 36.92,
|
416 |
+
"step": 195,
|
417 |
+
"token_acc": 0.851006381934217,
|
418 |
+
"train_speed(iter/s)": 0.180236
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"epoch": 0.23873470605789315,
|
422 |
+
"grad_norm": 3.1074760910693797,
|
423 |
+
"learning_rate": 9.976265366312746e-06,
|
424 |
+
"loss": 0.5033563137054443,
|
425 |
+
"memory(GiB)": 36.92,
|
426 |
+
"step": 200,
|
427 |
+
"token_acc": 0.8293048128342246,
|
428 |
+
"train_speed(iter/s)": 0.180618
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.23873470605789315,
|
432 |
+
"eval_loss": 0.4415110647678375,
|
433 |
+
"eval_runtime": 10.926,
|
434 |
+
"eval_samples_per_second": 24.62,
|
435 |
+
"eval_steps_per_second": 3.112,
|
436 |
+
"eval_token_acc": 0.8473173672384502,
|
437 |
+
"step": 200
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"epoch": 0.2447030737093405,
|
441 |
+
"grad_norm": 2.7742402422517016,
|
442 |
+
"learning_rate": 9.972952618294442e-06,
|
443 |
+
"loss": 0.48658447265625,
|
444 |
+
"memory(GiB)": 36.92,
|
445 |
+
"step": 205,
|
446 |
+
"token_acc": 0.8399616256759114,
|
447 |
+
"train_speed(iter/s)": 0.171547
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.25067144136078784,
|
451 |
+
"grad_norm": 2.9146485975442946,
|
452 |
+
"learning_rate": 9.969424157564215e-06,
|
453 |
+
"loss": 0.48202037811279297,
|
454 |
+
"memory(GiB)": 36.92,
|
455 |
+
"step": 210,
|
456 |
+
"token_acc": 0.8229777256740914,
|
457 |
+
"train_speed(iter/s)": 0.172058
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.25663980901223515,
|
461 |
+
"grad_norm": 2.6037700192849007,
|
462 |
+
"learning_rate": 9.965680137176778e-06,
|
463 |
+
"loss": 0.4780398368835449,
|
464 |
+
"memory(GiB)": 36.92,
|
465 |
+
"step": 215,
|
466 |
+
"token_acc": 0.8451862602806,
|
467 |
+
"train_speed(iter/s)": 0.172776
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"epoch": 0.26260817666368247,
|
471 |
+
"grad_norm": 2.4624431066871555,
|
472 |
+
"learning_rate": 9.961720719537217e-06,
|
473 |
+
"loss": 0.46450080871582033,
|
474 |
+
"memory(GiB)": 36.92,
|
475 |
+
"step": 220,
|
476 |
+
"token_acc": 0.8089250493096647,
|
477 |
+
"train_speed(iter/s)": 0.173186
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.26857654431512984,
|
481 |
+
"grad_norm": 2.6192496099911624,
|
482 |
+
"learning_rate": 9.957546076393944e-06,
|
483 |
+
"loss": 0.44403810501098634,
|
484 |
+
"memory(GiB)": 36.92,
|
485 |
+
"step": 225,
|
486 |
+
"token_acc": 0.8560982743492249,
|
487 |
+
"train_speed(iter/s)": 0.173308
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"epoch": 0.27454491196657715,
|
491 |
+
"grad_norm": 2.5789044914565227,
|
492 |
+
"learning_rate": 9.953156388831246e-06,
|
493 |
+
"loss": 0.4940804481506348,
|
494 |
+
"memory(GiB)": 36.92,
|
495 |
+
"step": 230,
|
496 |
+
"token_acc": 0.8385935769656699,
|
497 |
+
"train_speed(iter/s)": 0.173656
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 0.28051327961802447,
|
501 |
+
"grad_norm": 2.3813674364243984,
|
502 |
+
"learning_rate": 9.948551847261439e-06,
|
503 |
+
"loss": 0.4587420463562012,
|
504 |
+
"memory(GiB)": 36.92,
|
505 |
+
"step": 235,
|
506 |
+
"token_acc": 0.8549975381585426,
|
507 |
+
"train_speed(iter/s)": 0.173976
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 0.2864816472694718,
|
511 |
+
"grad_norm": 2.7610173702743865,
|
512 |
+
"learning_rate": 9.943732651416597e-06,
|
513 |
+
"loss": 0.4972860336303711,
|
514 |
+
"memory(GiB)": 36.92,
|
515 |
+
"step": 240,
|
516 |
+
"token_acc": 0.8406979379107183,
|
517 |
+
"train_speed(iter/s)": 0.174337
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"epoch": 0.29245001492091915,
|
521 |
+
"grad_norm": 2.390894612477832,
|
522 |
+
"learning_rate": 9.938699010339898e-06,
|
523 |
+
"loss": 0.4903904438018799,
|
524 |
+
"memory(GiB)": 36.92,
|
525 |
+
"step": 245,
|
526 |
+
"token_acc": 0.8545253863134658,
|
527 |
+
"train_speed(iter/s)": 0.174579
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.29841838257236647,
|
531 |
+
"grad_norm": 2.3711824949447546,
|
532 |
+
"learning_rate": 9.933451142376545e-06,
|
533 |
+
"loss": 0.4524253845214844,
|
534 |
+
"memory(GiB)": 37.05,
|
535 |
+
"step": 250,
|
536 |
+
"token_acc": 0.8489612577203818,
|
537 |
+
"train_speed(iter/s)": 0.174973
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 0.3043867502238138,
|
541 |
+
"grad_norm": 2.2514671634568364,
|
542 |
+
"learning_rate": 9.927989275164305e-06,
|
543 |
+
"loss": 0.48909597396850585,
|
544 |
+
"memory(GiB)": 37.05,
|
545 |
+
"step": 255,
|
546 |
+
"token_acc": 0.8518639633747548,
|
547 |
+
"train_speed(iter/s)": 0.175028
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"epoch": 0.3103551178752611,
|
551 |
+
"grad_norm": 2.3714755110814005,
|
552 |
+
"learning_rate": 9.922313645623634e-06,
|
553 |
+
"loss": 0.4785162448883057,
|
554 |
+
"memory(GiB)": 37.05,
|
555 |
+
"step": 260,
|
556 |
+
"token_acc": 0.8465215082315454,
|
557 |
+
"train_speed(iter/s)": 0.175714
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 0.31632348552670847,
|
561 |
+
"grad_norm": 2.648679383955696,
|
562 |
+
"learning_rate": 9.916424499947395e-06,
|
563 |
+
"loss": 0.46675701141357423,
|
564 |
+
"memory(GiB)": 37.05,
|
565 |
+
"step": 265,
|
566 |
+
"token_acc": 0.8571428571428571,
|
567 |
+
"train_speed(iter/s)": 0.175927
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.3222918531781558,
|
571 |
+
"grad_norm": 2.579144815458166,
|
572 |
+
"learning_rate": 9.910322093590177e-06,
|
573 |
+
"loss": 0.47339348793029784,
|
574 |
+
"memory(GiB)": 37.05,
|
575 |
+
"step": 270,
|
576 |
+
"token_acc": 0.8505902192242834,
|
577 |
+
"train_speed(iter/s)": 0.176471
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.3282602208296031,
|
581 |
+
"grad_norm": 2.2898701347032793,
|
582 |
+
"learning_rate": 9.904006691257224e-06,
|
583 |
+
"loss": 0.49665226936340334,
|
584 |
+
"memory(GiB)": 37.05,
|
585 |
+
"step": 275,
|
586 |
+
"token_acc": 0.8427124366910523,
|
587 |
+
"train_speed(iter/s)": 0.17689
|
588 |
+
},
|
589 |
+
{
|
590 |
+
"epoch": 0.3342285884810504,
|
591 |
+
"grad_norm": 1.9441720928034771,
|
592 |
+
"learning_rate": 9.897478566892942e-06,
|
593 |
+
"loss": 0.44453701972961424,
|
594 |
+
"memory(GiB)": 37.05,
|
595 |
+
"step": 280,
|
596 |
+
"token_acc": 0.8629363449691991,
|
597 |
+
"train_speed(iter/s)": 0.177368
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.3401969561324978,
|
601 |
+
"grad_norm": 2.4637260658165,
|
602 |
+
"learning_rate": 9.890738003669029e-06,
|
603 |
+
"loss": 0.4563939094543457,
|
604 |
+
"memory(GiB)": 37.05,
|
605 |
+
"step": 285,
|
606 |
+
"token_acc": 0.8230596456201648,
|
607 |
+
"train_speed(iter/s)": 0.1776
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"epoch": 0.3461653237839451,
|
611 |
+
"grad_norm": 2.287302517723748,
|
612 |
+
"learning_rate": 9.883785293972175e-06,
|
613 |
+
"loss": 0.504718017578125,
|
614 |
+
"memory(GiB)": 37.05,
|
615 |
+
"step": 290,
|
616 |
+
"token_acc": 0.7899543378995434,
|
617 |
+
"train_speed(iter/s)": 0.177582
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"epoch": 0.3521336914353924,
|
621 |
+
"grad_norm": 2.328908891504034,
|
622 |
+
"learning_rate": 9.87662073939139e-06,
|
623 |
+
"loss": 0.4355961799621582,
|
624 |
+
"memory(GiB)": 37.05,
|
625 |
+
"step": 295,
|
626 |
+
"token_acc": 0.8636019960683502,
|
627 |
+
"train_speed(iter/s)": 0.177798
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.35810205908683973,
|
631 |
+
"grad_norm": 2.444070696496546,
|
632 |
+
"learning_rate": 9.869244650704924e-06,
|
633 |
+
"loss": 0.4655925750732422,
|
634 |
+
"memory(GiB)": 37.05,
|
635 |
+
"step": 300,
|
636 |
+
"token_acc": 0.8573033707865169,
|
637 |
+
"train_speed(iter/s)": 0.177836
|
638 |
+
},
|
639 |
+
{
|
640 |
+
"epoch": 0.35810205908683973,
|
641 |
+
"eval_loss": 0.4284290373325348,
|
642 |
+
"eval_runtime": 10.9831,
|
643 |
+
"eval_samples_per_second": 24.492,
|
644 |
+
"eval_steps_per_second": 3.096,
|
645 |
+
"eval_token_acc": 0.8515189711550757,
|
646 |
+
"step": 300
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 0.3640704267382871,
|
650 |
+
"grad_norm": 2.659611192736946,
|
651 |
+
"learning_rate": 9.861657347866778e-06,
|
652 |
+
"loss": 0.5253509521484375,
|
653 |
+
"memory(GiB)": 37.06,
|
654 |
+
"step": 305,
|
655 |
+
"token_acc": 0.828113750899928,
|
656 |
+
"train_speed(iter/s)": 0.171888
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.3700387943897344,
|
660 |
+
"grad_norm": 2.6984676971627226,
|
661 |
+
"learning_rate": 9.853859159992831e-06,
|
662 |
+
"loss": 0.47617392539978026,
|
663 |
+
"memory(GiB)": 37.06,
|
664 |
+
"step": 310,
|
665 |
+
"token_acc": 0.8316008316008316,
|
666 |
+
"train_speed(iter/s)": 0.172231
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"epoch": 0.37600716204118173,
|
670 |
+
"grad_norm": 2.195598140600359,
|
671 |
+
"learning_rate": 9.845850425346563e-06,
|
672 |
+
"loss": 0.4360311508178711,
|
673 |
+
"memory(GiB)": 37.06,
|
674 |
+
"step": 315,
|
675 |
+
"token_acc": 0.848318462594372,
|
676 |
+
"train_speed(iter/s)": 0.172652
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 0.38197552969262905,
|
680 |
+
"grad_norm": 2.4976869303898597,
|
681 |
+
"learning_rate": 9.837631491324379e-06,
|
682 |
+
"loss": 0.46515851020812987,
|
683 |
+
"memory(GiB)": 37.06,
|
684 |
+
"step": 320,
|
685 |
+
"token_acc": 0.8522144522144522,
|
686 |
+
"train_speed(iter/s)": 0.172786
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.3879438973440764,
|
690 |
+
"grad_norm": 3.017469180784894,
|
691 |
+
"learning_rate": 9.829202714440544e-06,
|
692 |
+
"loss": 0.5420156478881836,
|
693 |
+
"memory(GiB)": 37.06,
|
694 |
+
"step": 325,
|
695 |
+
"token_acc": 0.8376052027543994,
|
696 |
+
"train_speed(iter/s)": 0.17318
|
697 |
+
},
|
698 |
+
{
|
699 |
+
"epoch": 0.39391226499552373,
|
700 |
+
"grad_norm": 2.5730220119384297,
|
701 |
+
"learning_rate": 9.820564460311719e-06,
|
702 |
+
"loss": 0.4916552543640137,
|
703 |
+
"memory(GiB)": 37.06,
|
704 |
+
"step": 330,
|
705 |
+
"token_acc": 0.8207920792079207,
|
706 |
+
"train_speed(iter/s)": 0.173365
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 0.39988063264697105,
|
710 |
+
"grad_norm": 2.798903385122773,
|
711 |
+
"learning_rate": 9.811717103641096e-06,
|
712 |
+
"loss": 0.4587296485900879,
|
713 |
+
"memory(GiB)": 37.06,
|
714 |
+
"step": 335,
|
715 |
+
"token_acc": 0.8592551001310126,
|
716 |
+
"train_speed(iter/s)": 0.173592
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.40584900029841836,
|
720 |
+
"grad_norm": 2.6409823275058653,
|
721 |
+
"learning_rate": 9.802661028202147e-06,
|
722 |
+
"loss": 0.48290514945983887,
|
723 |
+
"memory(GiB)": 37.06,
|
724 |
+
"step": 340,
|
725 |
+
"token_acc": 0.823793194407808,
|
726 |
+
"train_speed(iter/s)": 0.173952
|
727 |
+
},
|
728 |
+
{
|
729 |
+
"epoch": 0.41181736794986573,
|
730 |
+
"grad_norm": 3.0285812809146635,
|
731 |
+
"learning_rate": 9.79339662682198e-06,
|
732 |
+
"loss": 0.46567506790161134,
|
733 |
+
"memory(GiB)": 37.06,
|
734 |
+
"step": 345,
|
735 |
+
"token_acc": 0.8304556354916067,
|
736 |
+
"train_speed(iter/s)": 0.174192
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 0.41778573560131305,
|
740 |
+
"grad_norm": 2.4611578793858486,
|
741 |
+
"learning_rate": 9.783924301364297e-06,
|
742 |
+
"loss": 0.4647653579711914,
|
743 |
+
"memory(GiB)": 37.06,
|
744 |
+
"step": 350,
|
745 |
+
"token_acc": 0.8199260286638927,
|
746 |
+
"train_speed(iter/s)": 0.17443
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.42375410325276036,
|
750 |
+
"grad_norm": 2.154896994755901,
|
751 |
+
"learning_rate": 9.774244462711962e-06,
|
752 |
+
"loss": 0.4952418327331543,
|
753 |
+
"memory(GiB)": 37.06,
|
754 |
+
"step": 355,
|
755 |
+
"token_acc": 0.8217054263565892,
|
756 |
+
"train_speed(iter/s)": 0.174757
|
757 |
+
},
|
758 |
+
{
|
759 |
+
"epoch": 0.4297224709042077,
|
760 |
+
"grad_norm": 2.005838047714932,
|
761 |
+
"learning_rate": 9.764357530749178e-06,
|
762 |
+
"loss": 0.4674674034118652,
|
763 |
+
"memory(GiB)": 37.06,
|
764 |
+
"step": 360,
|
765 |
+
"token_acc": 0.841979596266551,
|
766 |
+
"train_speed(iter/s)": 0.174828
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 0.43569083855565505,
|
770 |
+
"grad_norm": 2.292609923640767,
|
771 |
+
"learning_rate": 9.754263934343272e-06,
|
772 |
+
"loss": 0.44636335372924807,
|
773 |
+
"memory(GiB)": 37.06,
|
774 |
+
"step": 365,
|
775 |
+
"token_acc": 0.8596112311015118,
|
776 |
+
"train_speed(iter/s)": 0.175118
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.44165920620710236,
|
780 |
+
"grad_norm": 2.477107058493794,
|
781 |
+
"learning_rate": 9.743964111326098e-06,
|
782 |
+
"loss": 0.4866192817687988,
|
783 |
+
"memory(GiB)": 37.06,
|
784 |
+
"step": 370,
|
785 |
+
"token_acc": 0.809440252675908,
|
786 |
+
"train_speed(iter/s)": 0.175357
|
787 |
+
},
|
788 |
+
{
|
789 |
+
"epoch": 0.4476275738585497,
|
790 |
+
"grad_norm": 2.3446291196746922,
|
791 |
+
"learning_rate": 9.733458508475038e-06,
|
792 |
+
"loss": 0.4887577533721924,
|
793 |
+
"memory(GiB)": 37.06,
|
794 |
+
"step": 375,
|
795 |
+
"token_acc": 0.8332948510736551,
|
796 |
+
"train_speed(iter/s)": 0.175371
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 0.453595941509997,
|
800 |
+
"grad_norm": 2.29799169108157,
|
801 |
+
"learning_rate": 9.722747581493625e-06,
|
802 |
+
"loss": 0.49045257568359374,
|
803 |
+
"memory(GiB)": 37.06,
|
804 |
+
"step": 380,
|
805 |
+
"token_acc": 0.8406266882766072,
|
806 |
+
"train_speed(iter/s)": 0.175414
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 0.45956430916144436,
|
810 |
+
"grad_norm": 2.563802674403576,
|
811 |
+
"learning_rate": 9.711831794991777e-06,
|
812 |
+
"loss": 0.4675490379333496,
|
813 |
+
"memory(GiB)": 37.06,
|
814 |
+
"step": 385,
|
815 |
+
"token_acc": 0.847358529964502,
|
816 |
+
"train_speed(iter/s)": 0.175567
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 0.4655326768128917,
|
820 |
+
"grad_norm": 2.480776446284018,
|
821 |
+
"learning_rate": 9.700711622465645e-06,
|
822 |
+
"loss": 0.4845867156982422,
|
823 |
+
"memory(GiB)": 37.06,
|
824 |
+
"step": 390,
|
825 |
+
"token_acc": 0.8422996998383745,
|
826 |
+
"train_speed(iter/s)": 0.17572
|
827 |
+
},
|
828 |
+
{
|
829 |
+
"epoch": 0.471501044464339,
|
830 |
+
"grad_norm": 2.721044012538843,
|
831 |
+
"learning_rate": 9.689387546277062e-06,
|
832 |
+
"loss": 0.46145071983337405,
|
833 |
+
"memory(GiB)": 37.06,
|
834 |
+
"step": 395,
|
835 |
+
"token_acc": 0.8513663630304377,
|
836 |
+
"train_speed(iter/s)": 0.175882
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.4774694121157863,
|
840 |
+
"grad_norm": 2.580126202957563,
|
841 |
+
"learning_rate": 9.677860057632642e-06,
|
842 |
+
"loss": 0.5093360424041748,
|
843 |
+
"memory(GiB)": 37.06,
|
844 |
+
"step": 400,
|
845 |
+
"token_acc": 0.8206378986866791,
|
846 |
+
"train_speed(iter/s)": 0.175987
|
847 |
+
},
|
848 |
+
{
|
849 |
+
"epoch": 0.4774694121157863,
|
850 |
+
"eval_loss": 0.42347872257232666,
|
851 |
+
"eval_runtime": 10.9358,
|
852 |
+
"eval_samples_per_second": 24.598,
|
853 |
+
"eval_steps_per_second": 3.109,
|
854 |
+
"eval_token_acc": 0.8527429166438318,
|
855 |
+
"step": 400
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.4834377797672337,
|
859 |
+
"grad_norm": 2.355447977882308,
|
860 |
+
"learning_rate": 9.66612965656245e-06,
|
861 |
+
"loss": 0.48992347717285156,
|
862 |
+
"memory(GiB)": 37.06,
|
863 |
+
"step": 405,
|
864 |
+
"token_acc": 0.8608419645840294,
|
865 |
+
"train_speed(iter/s)": 0.171561
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"epoch": 0.489406147418681,
|
869 |
+
"grad_norm": 2.0174115419967773,
|
870 |
+
"learning_rate": 9.654196851898325e-06,
|
871 |
+
"loss": 0.4750755786895752,
|
872 |
+
"memory(GiB)": 37.06,
|
873 |
+
"step": 410,
|
874 |
+
"token_acc": 0.8274902615470228,
|
875 |
+
"train_speed(iter/s)": 0.171858
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"epoch": 0.4953745150701283,
|
879 |
+
"grad_norm": 2.155026242929759,
|
880 |
+
"learning_rate": 9.642062161251807e-06,
|
881 |
+
"loss": 0.46627135276794435,
|
882 |
+
"memory(GiB)": 37.06,
|
883 |
+
"step": 415,
|
884 |
+
"token_acc": 0.8661600496277916,
|
885 |
+
"train_speed(iter/s)": 0.17197
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.5013428827215757,
|
889 |
+
"grad_norm": 2.8519922687228174,
|
890 |
+
"learning_rate": 9.62972611099168e-06,
|
891 |
+
"loss": 0.4620970726013184,
|
892 |
+
"memory(GiB)": 37.06,
|
893 |
+
"step": 420,
|
894 |
+
"token_acc": 0.8595988538681948,
|
895 |
+
"train_speed(iter/s)": 0.172268
|
896 |
+
},
|
897 |
+
{
|
898 |
+
"epoch": 0.5073112503730229,
|
899 |
+
"grad_norm": 2.5658438134794324,
|
900 |
+
"learning_rate": 9.617189236221143e-06,
|
901 |
+
"loss": 0.45318241119384767,
|
902 |
+
"memory(GiB)": 37.06,
|
903 |
+
"step": 425,
|
904 |
+
"token_acc": 0.8252274866645748,
|
905 |
+
"train_speed(iter/s)": 0.172438
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.5132796180244703,
|
909 |
+
"grad_norm": 2.2980368916312206,
|
910 |
+
"learning_rate": 9.604452080754601e-06,
|
911 |
+
"loss": 0.46477622985839845,
|
912 |
+
"memory(GiB)": 37.06,
|
913 |
+
"step": 430,
|
914 |
+
"token_acc": 0.8681318681318682,
|
915 |
+
"train_speed(iter/s)": 0.17271
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 0.5192479856759177,
|
919 |
+
"grad_norm": 2.3920351806796925,
|
920 |
+
"learning_rate": 9.591515197094064e-06,
|
921 |
+
"loss": 0.43802127838134763,
|
922 |
+
"memory(GiB)": 37.06,
|
923 |
+
"step": 435,
|
924 |
+
"token_acc": 0.8632865550022635,
|
925 |
+
"train_speed(iter/s)": 0.172963
|
926 |
+
},
|
927 |
+
{
|
928 |
+
"epoch": 0.5252163533273649,
|
929 |
+
"grad_norm": 2.3926322888936196,
|
930 |
+
"learning_rate": 9.578379146405202e-06,
|
931 |
+
"loss": 0.4414364814758301,
|
932 |
+
"memory(GiB)": 37.06,
|
933 |
+
"step": 440,
|
934 |
+
"token_acc": 0.8378196500672948,
|
935 |
+
"train_speed(iter/s)": 0.173049
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 0.5311847209788123,
|
939 |
+
"grad_norm": 2.5309415862721787,
|
940 |
+
"learning_rate": 9.565044498492984e-06,
|
941 |
+
"loss": 0.4737836837768555,
|
942 |
+
"memory(GiB)": 37.06,
|
943 |
+
"step": 445,
|
944 |
+
"token_acc": 0.8400094809196492,
|
945 |
+
"train_speed(iter/s)": 0.173413
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 0.5371530886302597,
|
949 |
+
"grad_norm": 2.574732220606661,
|
950 |
+
"learning_rate": 9.551511831776966e-06,
|
951 |
+
"loss": 0.4299252986907959,
|
952 |
+
"memory(GiB)": 37.06,
|
953 |
+
"step": 450,
|
954 |
+
"token_acc": 0.8394777265745008,
|
955 |
+
"train_speed(iter/s)": 0.173639
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 0.5431214562817069,
|
959 |
+
"grad_norm": 2.209862389780888,
|
960 |
+
"learning_rate": 9.53778173326621e-06,
|
961 |
+
"loss": 0.44927520751953126,
|
962 |
+
"memory(GiB)": 37.06,
|
963 |
+
"step": 455,
|
964 |
+
"token_acc": 0.8641338013627916,
|
965 |
+
"train_speed(iter/s)": 0.173751
|
966 |
+
},
|
967 |
+
{
|
968 |
+
"epoch": 0.5490898239331543,
|
969 |
+
"grad_norm": 2.524639918389781,
|
970 |
+
"learning_rate": 9.523854798533814e-06,
|
971 |
+
"loss": 0.44107656478881835,
|
972 |
+
"memory(GiB)": 37.06,
|
973 |
+
"step": 460,
|
974 |
+
"token_acc": 0.8868033496967946,
|
975 |
+
"train_speed(iter/s)": 0.174216
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 0.5550581915846016,
|
979 |
+
"grad_norm": 2.1182849441153215,
|
980 |
+
"learning_rate": 9.509731631691071e-06,
|
981 |
+
"loss": 0.43174285888671876,
|
982 |
+
"memory(GiB)": 37.06,
|
983 |
+
"step": 465,
|
984 |
+
"token_acc": 0.855464759959142,
|
985 |
+
"train_speed(iter/s)": 0.174365
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"epoch": 0.5610265592360489,
|
989 |
+
"grad_norm": 2.2926487255366688,
|
990 |
+
"learning_rate": 9.495412845361279e-06,
|
991 |
+
"loss": 0.48258438110351565,
|
992 |
+
"memory(GiB)": 37.06,
|
993 |
+
"step": 470,
|
994 |
+
"token_acc": 0.8603872818551279,
|
995 |
+
"train_speed(iter/s)": 0.174664
|
996 |
+
},
|
997 |
+
{
|
998 |
+
"epoch": 0.5669949268874963,
|
999 |
+
"grad_norm": 2.192746026976168,
|
1000 |
+
"learning_rate": 9.480899060653154e-06,
|
1001 |
+
"loss": 0.4563854217529297,
|
1002 |
+
"memory(GiB)": 37.06,
|
1003 |
+
"step": 475,
|
1004 |
+
"token_acc": 0.8394289067083904,
|
1005 |
+
"train_speed(iter/s)": 0.17502
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 0.5729632945389436,
|
1009 |
+
"grad_norm": 2.014209866578747,
|
1010 |
+
"learning_rate": 9.466190907133901e-06,
|
1011 |
+
"loss": 0.4754791259765625,
|
1012 |
+
"memory(GiB)": 37.06,
|
1013 |
+
"step": 480,
|
1014 |
+
"token_acc": 0.8577712609970675,
|
1015 |
+
"train_speed(iter/s)": 0.175025
|
1016 |
+
},
|
1017 |
+
{
|
1018 |
+
"epoch": 0.5789316621903909,
|
1019 |
+
"grad_norm": 2.559320864210838,
|
1020 |
+
"learning_rate": 9.451289022801894e-06,
|
1021 |
+
"loss": 0.47232685089111326,
|
1022 |
+
"memory(GiB)": 37.06,
|
1023 |
+
"step": 485,
|
1024 |
+
"token_acc": 0.8380402225074882,
|
1025 |
+
"train_speed(iter/s)": 0.175186
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"epoch": 0.5849000298418383,
|
1029 |
+
"grad_norm": 2.2053676509330433,
|
1030 |
+
"learning_rate": 9.436194054058998e-06,
|
1031 |
+
"loss": 0.4336155891418457,
|
1032 |
+
"memory(GiB)": 37.06,
|
1033 |
+
"step": 490,
|
1034 |
+
"token_acc": 0.8529990167158309,
|
1035 |
+
"train_speed(iter/s)": 0.175216
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 0.5908683974932856,
|
1039 |
+
"grad_norm": 2.46940001428622,
|
1040 |
+
"learning_rate": 9.420906655682553e-06,
|
1041 |
+
"loss": 0.45275249481201174,
|
1042 |
+
"memory(GiB)": 37.06,
|
1043 |
+
"step": 495,
|
1044 |
+
"token_acc": 0.8271080928126768,
|
1045 |
+
"train_speed(iter/s)": 0.175432
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"epoch": 0.5968367651447329,
|
1049 |
+
"grad_norm": 2.3675730058319293,
|
1050 |
+
"learning_rate": 9.405427490796941e-06,
|
1051 |
+
"loss": 0.48803205490112306,
|
1052 |
+
"memory(GiB)": 37.06,
|
1053 |
+
"step": 500,
|
1054 |
+
"token_acc": 0.8432593011741406,
|
1055 |
+
"train_speed(iter/s)": 0.175539
|
1056 |
+
},
|
1057 |
+
{
|
1058 |
+
"epoch": 0.5968367651447329,
|
1059 |
+
"eval_loss": 0.4169776141643524,
|
1060 |
+
"eval_runtime": 10.9599,
|
1061 |
+
"eval_samples_per_second": 24.544,
|
1062 |
+
"eval_steps_per_second": 3.102,
|
1063 |
+
"eval_token_acc": 0.8532361484079575,
|
1064 |
+
"step": 500
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 0.6028051327961802,
|
1068 |
+
"grad_norm": 2.1414646330001217,
|
1069 |
+
"learning_rate": 9.389757230844845e-06,
|
1070 |
+
"loss": 0.46323652267456056,
|
1071 |
+
"memory(GiB)": 37.06,
|
1072 |
+
"step": 505,
|
1073 |
+
"token_acc": 0.8552877345904119,
|
1074 |
+
"train_speed(iter/s)": 0.159112
|
1075 |
+
},
|
1076 |
+
{
|
1077 |
+
"epoch": 0.6087735004476276,
|
1078 |
+
"grad_norm": 2.5503273386919667,
|
1079 |
+
"learning_rate": 9.373896555558113e-06,
|
1080 |
+
"loss": 0.4701972961425781,
|
1081 |
+
"memory(GiB)": 37.06,
|
1082 |
+
"step": 510,
|
1083 |
+
"token_acc": 0.8592652620205294,
|
1084 |
+
"train_speed(iter/s)": 0.159422
|
1085 |
+
},
|
1086 |
+
{
|
1087 |
+
"epoch": 0.6147418680990749,
|
1088 |
+
"grad_norm": 2.6125713791079996,
|
1089 |
+
"learning_rate": 9.357846152928275e-06,
|
1090 |
+
"loss": 0.4990544319152832,
|
1091 |
+
"memory(GiB)": 37.06,
|
1092 |
+
"step": 515,
|
1093 |
+
"token_acc": 0.824811732065002,
|
1094 |
+
"train_speed(iter/s)": 0.159707
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.6207102357505222,
|
1098 |
+
"grad_norm": 1.9353177630019818,
|
1099 |
+
"learning_rate": 9.341606719176695e-06,
|
1100 |
+
"loss": 0.4381883144378662,
|
1101 |
+
"memory(GiB)": 37.06,
|
1102 |
+
"step": 520,
|
1103 |
+
"token_acc": 0.867666063582321,
|
1104 |
+
"train_speed(iter/s)": 0.159909
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 0.6266786034019696,
|
1108 |
+
"grad_norm": 2.3284686918748667,
|
1109 |
+
"learning_rate": 9.325178958724387e-06,
|
1110 |
+
"loss": 0.45581645965576173,
|
1111 |
+
"memory(GiB)": 37.06,
|
1112 |
+
"step": 525,
|
1113 |
+
"token_acc": 0.8706395348837209,
|
1114 |
+
"train_speed(iter/s)": 0.160206
|
1115 |
+
},
|
1116 |
+
{
|
1117 |
+
"epoch": 0.6326469710534169,
|
1118 |
+
"grad_norm": 2.2369421417810926,
|
1119 |
+
"learning_rate": 9.308563584161439e-06,
|
1120 |
+
"loss": 0.4688922882080078,
|
1121 |
+
"memory(GiB)": 37.06,
|
1122 |
+
"step": 530,
|
1123 |
+
"token_acc": 0.8338983050847457,
|
1124 |
+
"train_speed(iter/s)": 0.160549
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 0.6386153387048642,
|
1128 |
+
"grad_norm": 2.4187058758316202,
|
1129 |
+
"learning_rate": 9.291761316216115e-06,
|
1130 |
+
"loss": 0.43785710334777833,
|
1131 |
+
"memory(GiB)": 37.06,
|
1132 |
+
"step": 535,
|
1133 |
+
"token_acc": 0.8175961715442666,
|
1134 |
+
"train_speed(iter/s)": 0.160901
|
1135 |
+
},
|
1136 |
+
{
|
1137 |
+
"epoch": 0.6445837063563116,
|
1138 |
+
"grad_norm": 2.11230034988461,
|
1139 |
+
"learning_rate": 9.274772883723587e-06,
|
1140 |
+
"loss": 0.4285177707672119,
|
1141 |
+
"memory(GiB)": 37.06,
|
1142 |
+
"step": 540,
|
1143 |
+
"token_acc": 0.8522423025435074,
|
1144 |
+
"train_speed(iter/s)": 0.161093
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"epoch": 0.6505520740077588,
|
1148 |
+
"grad_norm": 2.340278397663115,
|
1149 |
+
"learning_rate": 9.257599023594326e-06,
|
1150 |
+
"loss": 0.4503736972808838,
|
1151 |
+
"memory(GiB)": 37.06,
|
1152 |
+
"step": 545,
|
1153 |
+
"token_acc": 0.8704713049054184,
|
1154 |
+
"train_speed(iter/s)": 0.161286
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 0.6565204416592062,
|
1158 |
+
"grad_norm": 2.3913667503479705,
|
1159 |
+
"learning_rate": 9.24024048078213e-06,
|
1160 |
+
"loss": 0.42584834098815916,
|
1161 |
+
"memory(GiB)": 37.06,
|
1162 |
+
"step": 550,
|
1163 |
+
"token_acc": 0.8828032979976443,
|
1164 |
+
"train_speed(iter/s)": 0.161464
|
1165 |
+
},
|
1166 |
+
{
|
1167 |
+
"epoch": 0.6624888093106536,
|
1168 |
+
"grad_norm": 2.2991966974662628,
|
1169 |
+
"learning_rate": 9.222698008251814e-06,
|
1170 |
+
"loss": 0.48091468811035154,
|
1171 |
+
"memory(GiB)": 37.06,
|
1172 |
+
"step": 555,
|
1173 |
+
"token_acc": 0.8286792452830188,
|
1174 |
+
"train_speed(iter/s)": 0.161689
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"epoch": 0.6684571769621008,
|
1178 |
+
"grad_norm": 2.083499198931165,
|
1179 |
+
"learning_rate": 9.204972366946546e-06,
|
1180 |
+
"loss": 0.4586004734039307,
|
1181 |
+
"memory(GiB)": 37.06,
|
1182 |
+
"step": 560,
|
1183 |
+
"token_acc": 0.8503009027081244,
|
1184 |
+
"train_speed(iter/s)": 0.16188
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 0.6744255446135482,
|
1188 |
+
"grad_norm": 2.475812664409812,
|
1189 |
+
"learning_rate": 9.187064325754838e-06,
|
1190 |
+
"loss": 0.4561641693115234,
|
1191 |
+
"memory(GiB)": 37.06,
|
1192 |
+
"step": 565,
|
1193 |
+
"token_acc": 0.8384485031067596,
|
1194 |
+
"train_speed(iter/s)": 0.162054
|
1195 |
+
},
|
1196 |
+
{
|
1197 |
+
"epoch": 0.6803939122649956,
|
1198 |
+
"grad_norm": 2.4413316196832984,
|
1199 |
+
"learning_rate": 9.168974661477206e-06,
|
1200 |
+
"loss": 0.43843851089477537,
|
1201 |
+
"memory(GiB)": 37.06,
|
1202 |
+
"step": 570,
|
1203 |
+
"token_acc": 0.839965019676432,
|
1204 |
+
"train_speed(iter/s)": 0.162185
|
1205 |
+
},
|
1206 |
+
{
|
1207 |
+
"epoch": 0.6863622799164428,
|
1208 |
+
"grad_norm": 2.1737549301105075,
|
1209 |
+
"learning_rate": 9.150704158792456e-06,
|
1210 |
+
"loss": 0.4771718502044678,
|
1211 |
+
"memory(GiB)": 37.06,
|
1212 |
+
"step": 575,
|
1213 |
+
"token_acc": 0.8196035642844154,
|
1214 |
+
"train_speed(iter/s)": 0.162359
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.6923306475678902,
|
1218 |
+
"grad_norm": 2.1356874443108342,
|
1219 |
+
"learning_rate": 9.13225361022366e-06,
|
1220 |
+
"loss": 0.48221721649169924,
|
1221 |
+
"memory(GiB)": 37.06,
|
1222 |
+
"step": 580,
|
1223 |
+
"token_acc": 0.8299897993879632,
|
1224 |
+
"train_speed(iter/s)": 0.162445
|
1225 |
+
},
|
1226 |
+
{
|
1227 |
+
"epoch": 0.6982990152193375,
|
1228 |
+
"grad_norm": 2.3220256859553077,
|
1229 |
+
"learning_rate": 9.113623816103775e-06,
|
1230 |
+
"loss": 0.4806779384613037,
|
1231 |
+
"memory(GiB)": 37.06,
|
1232 |
+
"step": 585,
|
1233 |
+
"token_acc": 0.8411007545494895,
|
1234 |
+
"train_speed(iter/s)": 0.162682
|
1235 |
+
},
|
1236 |
+
{
|
1237 |
+
"epoch": 0.7042673828707848,
|
1238 |
+
"grad_norm": 2.069813477739464,
|
1239 |
+
"learning_rate": 9.094815584540922e-06,
|
1240 |
+
"loss": 0.4947704792022705,
|
1241 |
+
"memory(GiB)": 37.06,
|
1242 |
+
"step": 590,
|
1243 |
+
"token_acc": 0.862796833773087,
|
1244 |
+
"train_speed(iter/s)": 0.162845
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 0.7102357505222322,
|
1248 |
+
"grad_norm": 2.252802103709778,
|
1249 |
+
"learning_rate": 9.075829731383342e-06,
|
1250 |
+
"loss": 0.4306300163269043,
|
1251 |
+
"memory(GiB)": 37.06,
|
1252 |
+
"step": 595,
|
1253 |
+
"token_acc": 0.8425353797089894,
|
1254 |
+
"train_speed(iter/s)": 0.163154
|
1255 |
+
},
|
1256 |
+
{
|
1257 |
+
"epoch": 0.7162041181736795,
|
1258 |
+
"grad_norm": 2.241419478853809,
|
1259 |
+
"learning_rate": 9.056667080184004e-06,
|
1260 |
+
"loss": 0.4567378520965576,
|
1261 |
+
"memory(GiB)": 37.06,
|
1262 |
+
"step": 600,
|
1263 |
+
"token_acc": 0.8388354561996361,
|
1264 |
+
"train_speed(iter/s)": 0.163286
|
1265 |
+
},
|
1266 |
+
{
|
1267 |
+
"epoch": 0.7162041181736795,
|
1268 |
+
"eval_loss": 0.41334930062294006,
|
1269 |
+
"eval_runtime": 10.9312,
|
1270 |
+
"eval_samples_per_second": 24.608,
|
1271 |
+
"eval_steps_per_second": 3.11,
|
1272 |
+
"eval_token_acc": 0.8542591476224403,
|
1273 |
+
"step": 600
|
1274 |
+
},
|
1275 |
+
{
|
1276 |
+
"epoch": 0.7221724858251268,
|
1277 |
+
"grad_norm": 2.1208660287310384,
|
1278 |
+
"learning_rate": 9.037328462164866e-06,
|
1279 |
+
"loss": 0.44713678359985354,
|
1280 |
+
"memory(GiB)": 37.06,
|
1281 |
+
"step": 605,
|
1282 |
+
"token_acc": 0.8356246777796872,
|
1283 |
+
"train_speed(iter/s)": 0.151305
|
1284 |
+
},
|
1285 |
+
{
|
1286 |
+
"epoch": 0.7281408534765742,
|
1287 |
+
"grad_norm": 1.9420061515865858,
|
1288 |
+
"learning_rate": 9.01781471618085e-06,
|
1289 |
+
"loss": 0.45147147178649905,
|
1290 |
+
"memory(GiB)": 37.06,
|
1291 |
+
"step": 610,
|
1292 |
+
"token_acc": 0.8882771277816013,
|
1293 |
+
"train_speed(iter/s)": 0.151579
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.7341092211280215,
|
1297 |
+
"grad_norm": 2.370549361627338,
|
1298 |
+
"learning_rate": 8.998126688683423e-06,
|
1299 |
+
"loss": 0.4287998199462891,
|
1300 |
+
"memory(GiB)": 37.06,
|
1301 |
+
"step": 615,
|
1302 |
+
"token_acc": 0.8318122555410691,
|
1303 |
+
"train_speed(iter/s)": 0.15183
|
1304 |
+
},
|
1305 |
+
{
|
1306 |
+
"epoch": 0.7400775887794688,
|
1307 |
+
"grad_norm": 2.003208951467392,
|
1308 |
+
"learning_rate": 8.978265233683903e-06,
|
1309 |
+
"loss": 0.4494300842285156,
|
1310 |
+
"memory(GiB)": 37.06,
|
1311 |
+
"step": 620,
|
1312 |
+
"token_acc": 0.8252328878088295,
|
1313 |
+
"train_speed(iter/s)": 0.15205
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 0.7460459564309161,
|
1317 |
+
"grad_norm": 2.602367805333985,
|
1318 |
+
"learning_rate": 8.9582312127164e-06,
|
1319 |
+
"loss": 0.46652889251708984,
|
1320 |
+
"memory(GiB)": 37.06,
|
1321 |
+
"step": 625,
|
1322 |
+
"token_acc": 0.8474077428118633,
|
1323 |
+
"train_speed(iter/s)": 0.152311
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 0.7520143240823635,
|
1327 |
+
"grad_norm": 2.3007477614457765,
|
1328 |
+
"learning_rate": 8.938025494800454e-06,
|
1329 |
+
"loss": 0.46235361099243166,
|
1330 |
+
"memory(GiB)": 37.06,
|
1331 |
+
"step": 630,
|
1332 |
+
"token_acc": 0.8234998744664825,
|
1333 |
+
"train_speed(iter/s)": 0.152632
|
1334 |
+
},
|
1335 |
+
{
|
1336 |
+
"epoch": 0.7579826917338108,
|
1337 |
+
"grad_norm": 2.403260011722763,
|
1338 |
+
"learning_rate": 8.917648956403338e-06,
|
1339 |
+
"loss": 0.4329329490661621,
|
1340 |
+
"memory(GiB)": 37.06,
|
1341 |
+
"step": 635,
|
1342 |
+
"token_acc": 0.8512756689483509,
|
1343 |
+
"train_speed(iter/s)": 0.152969
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 0.7639510593852581,
|
1347 |
+
"grad_norm": 1.8459463363591184,
|
1348 |
+
"learning_rate": 8.897102481402031e-06,
|
1349 |
+
"loss": 0.45981664657592775,
|
1350 |
+
"memory(GiB)": 37.06,
|
1351 |
+
"step": 640,
|
1352 |
+
"token_acc": 0.8598321614878657,
|
1353 |
+
"train_speed(iter/s)": 0.153182
|
1354 |
+
},
|
1355 |
+
{
|
1356 |
+
"epoch": 0.7699194270367055,
|
1357 |
+
"grad_norm": 2.0204814112895044,
|
1358 |
+
"learning_rate": 8.876386961044892e-06,
|
1359 |
+
"loss": 0.46657752990722656,
|
1360 |
+
"memory(GiB)": 37.06,
|
1361 |
+
"step": 645,
|
1362 |
+
"token_acc": 0.8745874587458746,
|
1363 |
+
"train_speed(iter/s)": 0.153345
|
1364 |
+
},
|
1365 |
+
{
|
1366 |
+
"epoch": 0.7758877946881528,
|
1367 |
+
"grad_norm": 1.8481808083298177,
|
1368 |
+
"learning_rate": 8.855503293912987e-06,
|
1369 |
+
"loss": 0.4649078369140625,
|
1370 |
+
"memory(GiB)": 37.06,
|
1371 |
+
"step": 650,
|
1372 |
+
"token_acc": 0.8592820512820513,
|
1373 |
+
"train_speed(iter/s)": 0.153498
|
1374 |
+
},
|
1375 |
+
{
|
1376 |
+
"epoch": 0.7818561623396001,
|
1377 |
+
"grad_norm": 2.2884914044841698,
|
1378 |
+
"learning_rate": 8.834452385881121e-06,
|
1379 |
+
"loss": 0.4653633117675781,
|
1380 |
+
"memory(GiB)": 37.06,
|
1381 |
+
"step": 655,
|
1382 |
+
"token_acc": 0.8515602216389618,
|
1383 |
+
"train_speed(iter/s)": 0.153659
|
1384 |
+
},
|
1385 |
+
{
|
1386 |
+
"epoch": 0.7878245299910475,
|
1387 |
+
"grad_norm": 2.173340273942357,
|
1388 |
+
"learning_rate": 8.813235150078532e-06,
|
1389 |
+
"loss": 0.46648712158203126,
|
1390 |
+
"memory(GiB)": 37.06,
|
1391 |
+
"step": 660,
|
1392 |
+
"token_acc": 0.8156269959548648,
|
1393 |
+
"train_speed(iter/s)": 0.153953
|
1394 |
+
},
|
1395 |
+
{
|
1396 |
+
"epoch": 0.7937928976424948,
|
1397 |
+
"grad_norm": 2.2191296614587563,
|
1398 |
+
"learning_rate": 8.791852506849301e-06,
|
1399 |
+
"loss": 0.45751609802246096,
|
1400 |
+
"memory(GiB)": 37.06,
|
1401 |
+
"step": 665,
|
1402 |
+
"token_acc": 0.8260312580066616,
|
1403 |
+
"train_speed(iter/s)": 0.154161
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 0.7997612652939421,
|
1407 |
+
"grad_norm": 2.2870388856485335,
|
1408 |
+
"learning_rate": 8.770305383712407e-06,
|
1409 |
+
"loss": 0.4709470748901367,
|
1410 |
+
"memory(GiB)": 37.06,
|
1411 |
+
"step": 670,
|
1412 |
+
"token_acc": 0.842337607735968,
|
1413 |
+
"train_speed(iter/s)": 0.154453
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 0.8057296329453895,
|
1417 |
+
"grad_norm": 2.3046312751781866,
|
1418 |
+
"learning_rate": 8.748594715321512e-06,
|
1419 |
+
"loss": 0.44265017509460447,
|
1420 |
+
"memory(GiB)": 37.06,
|
1421 |
+
"step": 675,
|
1422 |
+
"token_acc": 0.8602195071443363,
|
1423 |
+
"train_speed(iter/s)": 0.154677
|
1424 |
+
},
|
1425 |
+
{
|
1426 |
+
"epoch": 0.8116980005968367,
|
1427 |
+
"grad_norm": 2.2464744707673985,
|
1428 |
+
"learning_rate": 8.726721443424409e-06,
|
1429 |
+
"loss": 0.4592324733734131,
|
1430 |
+
"memory(GiB)": 37.06,
|
1431 |
+
"step": 680,
|
1432 |
+
"token_acc": 0.8654945054945055,
|
1433 |
+
"train_speed(iter/s)": 0.154905
|
1434 |
+
},
|
1435 |
+
{
|
1436 |
+
"epoch": 0.8176663682482841,
|
1437 |
+
"grad_norm": 2.194092144648434,
|
1438 |
+
"learning_rate": 8.704686516822177e-06,
|
1439 |
+
"loss": 0.43160429000854494,
|
1440 |
+
"memory(GiB)": 37.06,
|
1441 |
+
"step": 685,
|
1442 |
+
"token_acc": 0.8649193548387096,
|
1443 |
+
"train_speed(iter/s)": 0.155078
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"epoch": 0.8236347358997315,
|
1447 |
+
"grad_norm": 2.247411516392796,
|
1448 |
+
"learning_rate": 8.682490891328016e-06,
|
1449 |
+
"loss": 0.45626983642578123,
|
1450 |
+
"memory(GiB)": 37.06,
|
1451 |
+
"step": 690,
|
1452 |
+
"token_acc": 0.8643364928909952,
|
1453 |
+
"train_speed(iter/s)": 0.155279
|
1454 |
+
},
|
1455 |
+
{
|
1456 |
+
"epoch": 0.8296031035511787,
|
1457 |
+
"grad_norm": 2.035754411138357,
|
1458 |
+
"learning_rate": 8.660135529725799e-06,
|
1459 |
+
"loss": 0.4315452575683594,
|
1460 |
+
"memory(GiB)": 37.06,
|
1461 |
+
"step": 695,
|
1462 |
+
"token_acc": 0.8554044380816035,
|
1463 |
+
"train_speed(iter/s)": 0.155502
|
1464 |
+
},
|
1465 |
+
{
|
1466 |
+
"epoch": 0.8355714712026261,
|
1467 |
+
"grad_norm": 2.292286762424394,
|
1468 |
+
"learning_rate": 8.6376214017283e-06,
|
1469 |
+
"loss": 0.4535685539245605,
|
1470 |
+
"memory(GiB)": 37.06,
|
1471 |
+
"step": 700,
|
1472 |
+
"token_acc": 0.833079268292683,
|
1473 |
+
"train_speed(iter/s)": 0.155636
|
1474 |
+
},
|
1475 |
+
{
|
1476 |
+
"epoch": 0.8355714712026261,
|
1477 |
+
"eval_loss": 0.4100053906440735,
|
1478 |
+
"eval_runtime": 10.9163,
|
1479 |
+
"eval_samples_per_second": 24.642,
|
1480 |
+
"eval_steps_per_second": 3.115,
|
1481 |
+
"eval_token_acc": 0.8548802542883762,
|
1482 |
+
"step": 700
|
1483 |
+
},
|
1484 |
+
{
|
1485 |
+
"epoch": 0.8415398388540735,
|
1486 |
+
"grad_norm": 2.6314360636405714,
|
1487 |
+
"learning_rate": 8.61494948393513e-06,
|
1488 |
+
"loss": 0.4539949417114258,
|
1489 |
+
"memory(GiB)": 37.06,
|
1490 |
+
"step": 705,
|
1491 |
+
"token_acc": 0.8583042973286876,
|
1492 |
+
"train_speed(iter/s)": 0.146478
|
1493 |
+
},
|
1494 |
+
{
|
1495 |
+
"epoch": 0.8475082065055207,
|
1496 |
+
"grad_norm": 2.1848010999728715,
|
1497 |
+
"learning_rate": 8.592120759790383e-06,
|
1498 |
+
"loss": 0.46171207427978517,
|
1499 |
+
"memory(GiB)": 37.06,
|
1500 |
+
"step": 710,
|
1501 |
+
"token_acc": 0.8417105263157895,
|
1502 |
+
"train_speed(iter/s)": 0.146671
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 0.8534765741569681,
|
1506 |
+
"grad_norm": 2.447774461275868,
|
1507 |
+
"learning_rate": 8.56913621953997e-06,
|
1508 |
+
"loss": 0.4798592567443848,
|
1509 |
+
"memory(GiB)": 37.06,
|
1510 |
+
"step": 715,
|
1511 |
+
"token_acc": 0.8562048588312541,
|
1512 |
+
"train_speed(iter/s)": 0.146953
|
1513 |
+
},
|
1514 |
+
{
|
1515 |
+
"epoch": 0.8594449418084154,
|
1516 |
+
"grad_norm": 2.596951485691162,
|
1517 |
+
"learning_rate": 8.545996860188668e-06,
|
1518 |
+
"loss": 0.4231537342071533,
|
1519 |
+
"memory(GiB)": 37.06,
|
1520 |
+
"step": 720,
|
1521 |
+
"token_acc": 0.831799700406591,
|
1522 |
+
"train_speed(iter/s)": 0.147232
|
1523 |
+
},
|
1524 |
+
{
|
1525 |
+
"epoch": 0.8654133094598627,
|
1526 |
+
"grad_norm": 2.0232163854750027,
|
1527 |
+
"learning_rate": 8.522703685456866e-06,
|
1528 |
+
"loss": 0.44301156997680663,
|
1529 |
+
"memory(GiB)": 37.06,
|
1530 |
+
"step": 725,
|
1531 |
+
"token_acc": 0.8794139744552968,
|
1532 |
+
"train_speed(iter/s)": 0.1475
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 0.8713816771113101,
|
1536 |
+
"grad_norm": 2.281907577430269,
|
1537 |
+
"learning_rate": 8.49925770573704e-06,
|
1538 |
+
"loss": 0.46319947242736814,
|
1539 |
+
"memory(GiB)": 37.06,
|
1540 |
+
"step": 730,
|
1541 |
+
"token_acc": 0.8430570505920344,
|
1542 |
+
"train_speed(iter/s)": 0.147765
|
1543 |
+
},
|
1544 |
+
{
|
1545 |
+
"epoch": 0.8773500447627574,
|
1546 |
+
"grad_norm": 2.190179810988922,
|
1547 |
+
"learning_rate": 8.475659938049912e-06,
|
1548 |
+
"loss": 0.4825079917907715,
|
1549 |
+
"memory(GiB)": 37.06,
|
1550 |
+
"step": 735,
|
1551 |
+
"token_acc": 0.839588377723971,
|
1552 |
+
"train_speed(iter/s)": 0.147996
|
1553 |
+
},
|
1554 |
+
{
|
1555 |
+
"epoch": 0.8833184124142047,
|
1556 |
+
"grad_norm": 2.014804370593861,
|
1557 |
+
"learning_rate": 8.45191140600034e-06,
|
1558 |
+
"loss": 0.454302978515625,
|
1559 |
+
"memory(GiB)": 37.06,
|
1560 |
+
"step": 740,
|
1561 |
+
"token_acc": 0.8007774538386784,
|
1562 |
+
"train_speed(iter/s)": 0.148279
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 0.8892867800656521,
|
1566 |
+
"grad_norm": 2.1256355584342077,
|
1567 |
+
"learning_rate": 8.42801313973292e-06,
|
1568 |
+
"loss": 0.4445801258087158,
|
1569 |
+
"memory(GiB)": 37.06,
|
1570 |
+
"step": 745,
|
1571 |
+
"token_acc": 0.846286205907657,
|
1572 |
+
"train_speed(iter/s)": 0.148536
|
1573 |
+
},
|
1574 |
+
{
|
1575 |
+
"epoch": 0.8952551477170994,
|
1576 |
+
"grad_norm": 2.6544295779283575,
|
1577 |
+
"learning_rate": 8.403966175887293e-06,
|
1578 |
+
"loss": 0.4630784511566162,
|
1579 |
+
"memory(GiB)": 37.06,
|
1580 |
+
"step": 750,
|
1581 |
+
"token_acc": 0.8537764350453172,
|
1582 |
+
"train_speed(iter/s)": 0.148704
|
1583 |
+
},
|
1584 |
+
{
|
1585 |
+
"epoch": 0.9012235153685467,
|
1586 |
+
"grad_norm": 2.4745309667627255,
|
1587 |
+
"learning_rate": 8.379771557553184e-06,
|
1588 |
+
"loss": 0.43903446197509766,
|
1589 |
+
"memory(GiB)": 37.06,
|
1590 |
+
"step": 755,
|
1591 |
+
"token_acc": 0.8682237600922722,
|
1592 |
+
"train_speed(iter/s)": 0.148945
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 0.907191883019994,
|
1596 |
+
"grad_norm": 2.167884085714607,
|
1597 |
+
"learning_rate": 8.355430334225159e-06,
|
1598 |
+
"loss": 0.445455265045166,
|
1599 |
+
"memory(GiB)": 37.06,
|
1600 |
+
"step": 760,
|
1601 |
+
"token_acc": 0.852589641434263,
|
1602 |
+
"train_speed(iter/s)": 0.149189
|
1603 |
+
},
|
1604 |
+
{
|
1605 |
+
"epoch": 0.9131602506714414,
|
1606 |
+
"grad_norm": 2.3516013470748116,
|
1607 |
+
"learning_rate": 8.330943561757092e-06,
|
1608 |
+
"loss": 0.44769630432128904,
|
1609 |
+
"memory(GiB)": 37.06,
|
1610 |
+
"step": 765,
|
1611 |
+
"token_acc": 0.8217955651703623,
|
1612 |
+
"train_speed(iter/s)": 0.149338
|
1613 |
+
},
|
1614 |
+
{
|
1615 |
+
"epoch": 0.9191286183228887,
|
1616 |
+
"grad_norm": 2.0619205640970506,
|
1617 |
+
"learning_rate": 8.30631230231637e-06,
|
1618 |
+
"loss": 0.46817874908447266,
|
1619 |
+
"memory(GiB)": 37.06,
|
1620 |
+
"step": 770,
|
1621 |
+
"token_acc": 0.8363870967741935,
|
1622 |
+
"train_speed(iter/s)": 0.149487
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 0.925096985974336,
|
1626 |
+
"grad_norm": 2.3440589362137993,
|
1627 |
+
"learning_rate": 8.281537624337823e-06,
|
1628 |
+
"loss": 0.4982964038848877,
|
1629 |
+
"memory(GiB)": 37.06,
|
1630 |
+
"step": 775,
|
1631 |
+
"token_acc": 0.8594432314410481,
|
1632 |
+
"train_speed(iter/s)": 0.149779
|
1633 |
+
},
|
1634 |
+
{
|
1635 |
+
"epoch": 0.9310653536257834,
|
1636 |
+
"grad_norm": 2.0757541904974097,
|
1637 |
+
"learning_rate": 8.256620602477372e-06,
|
1638 |
+
"loss": 0.4509378433227539,
|
1639 |
+
"memory(GiB)": 37.06,
|
1640 |
+
"step": 780,
|
1641 |
+
"token_acc": 0.8259721555448872,
|
1642 |
+
"train_speed(iter/s)": 0.149971
|
1643 |
+
},
|
1644 |
+
{
|
1645 |
+
"epoch": 0.9370337212772307,
|
1646 |
+
"grad_norm": 2.086378932611534,
|
1647 |
+
"learning_rate": 8.231562317565412e-06,
|
1648 |
+
"loss": 0.43694629669189455,
|
1649 |
+
"memory(GiB)": 37.06,
|
1650 |
+
"step": 785,
|
1651 |
+
"token_acc": 0.856384262611634,
|
1652 |
+
"train_speed(iter/s)": 0.150204
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 0.943002088928678,
|
1656 |
+
"grad_norm": 2.308538899901496,
|
1657 |
+
"learning_rate": 8.206363856559935e-06,
|
1658 |
+
"loss": 0.4430408477783203,
|
1659 |
+
"memory(GiB)": 37.06,
|
1660 |
+
"step": 790,
|
1661 |
+
"token_acc": 0.8422222222222222,
|
1662 |
+
"train_speed(iter/s)": 0.15035
|
1663 |
+
},
|
1664 |
+
{
|
1665 |
+
"epoch": 0.9489704565801254,
|
1666 |
+
"grad_norm": 1.8314796079076852,
|
1667 |
+
"learning_rate": 8.181026312499383e-06,
|
1668 |
+
"loss": 0.44437146186828613,
|
1669 |
+
"memory(GiB)": 37.06,
|
1670 |
+
"step": 795,
|
1671 |
+
"token_acc": 0.8529804865009356,
|
1672 |
+
"train_speed(iter/s)": 0.150549
|
1673 |
+
},
|
1674 |
+
{
|
1675 |
+
"epoch": 0.9549388242315726,
|
1676 |
+
"grad_norm": 2.2397424826021792,
|
1677 |
+
"learning_rate": 8.155550784455224e-06,
|
1678 |
+
"loss": 0.4815809726715088,
|
1679 |
+
"memory(GiB)": 37.06,
|
1680 |
+
"step": 800,
|
1681 |
+
"token_acc": 0.8588266107909901,
|
1682 |
+
"train_speed(iter/s)": 0.150753
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.9549388242315726,
|
1686 |
+
"eval_loss": 0.4058806300163269,
|
1687 |
+
"eval_runtime": 11.0737,
|
1688 |
+
"eval_samples_per_second": 24.292,
|
1689 |
+
"eval_steps_per_second": 3.07,
|
1690 |
+
"eval_token_acc": 0.8572368060503096,
|
1691 |
+
"step": 800
|
1692 |
+
}
|
1693 |
+
],
|
1694 |
+
"logging_steps": 5,
|
1695 |
+
"max_steps": 2511,
|
1696 |
+
"num_input_tokens_seen": 0,
|
1697 |
+
"num_train_epochs": 3,
|
1698 |
+
"save_steps": 100,
|
1699 |
+
"stateful_callbacks": {
|
1700 |
+
"TrainerControl": {
|
1701 |
+
"args": {
|
1702 |
+
"should_epoch_stop": false,
|
1703 |
+
"should_evaluate": false,
|
1704 |
+
"should_log": false,
|
1705 |
+
"should_save": true,
|
1706 |
+
"should_training_stop": false
|
1707 |
+
},
|
1708 |
+
"attributes": {}
|
1709 |
+
}
|
1710 |
+
},
|
1711 |
+
"total_flos": 88119181914112.0,
|
1712 |
+
"train_batch_size": 1,
|
1713 |
+
"trial_name": null,
|
1714 |
+
"trial_params": null
|
1715 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65baf90d8de25fc3cb2058e1aed844427e0cd325ca6a45cd1651b39d2f04e9ee
|
3 |
+
size 8120
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|