Model save
Browse files
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: HKUSTAudio/Llasa-1B
|
3 |
+
library_name: peft
|
4 |
+
license: cc-by-nc-4.0
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: A10-Llasa-1B_220K
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# A10-Llasa-1B_220K
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [HKUSTAudio/Llasa-1B](https://huggingface.co/HKUSTAudio/Llasa-1B) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 7.3216
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 5e-05
|
39 |
+
- train_batch_size: 3
|
40 |
+
- eval_batch_size: 3
|
41 |
+
- seed: 42
|
42 |
+
- distributed_type: multi-GPU
|
43 |
+
- num_devices: 2
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 24
|
46 |
+
- total_eval_batch_size: 6
|
47 |
+
- optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: cosine
|
49 |
+
- lr_scheduler_warmup_ratio: 0.03
|
50 |
+
- num_epochs: 1
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
55 |
+
|:-------------:|:------:|:-----:|:---------------:|
|
56 |
+
| No log | 0 | 0 | 7.8117 |
|
57 |
+
| 7.3694 | 0.0089 | 1000 | 7.5275 |
|
58 |
+
| 7.3694 | 0.0089 | 1000 | 7.5158 |
|
59 |
+
| 7.0835 | 0.0715 | 2000 | 7.4015 |
|
60 |
+
| 7.0793 | 0.1072 | 3000 | 7.3785 |
|
61 |
+
| 7.0461 | 0.1430 | 4000 | 7.3690 |
|
62 |
+
| 7.0339 | 0.1787 | 5000 | 7.3580 |
|
63 |
+
| 6.9696 | 0.2144 | 6000 | 7.3513 |
|
64 |
+
| 7.033 | 0.2502 | 7000 | 7.3444 |
|
65 |
+
| 6.9768 | 0.2859 | 8000 | 7.3387 |
|
66 |
+
| 7.1218 | 0.3216 | 9000 | 7.3378 |
|
67 |
+
| 7.041 | 0.3574 | 10000 | 7.3314 |
|
68 |
+
| 6.9799 | 0.3931 | 11000 | 7.3350 |
|
69 |
+
| 7.0261 | 0.4289 | 12000 | 7.3297 |
|
70 |
+
| 6.888 | 0.4646 | 13000 | 7.3288 |
|
71 |
+
| 6.9483 | 0.5003 | 14000 | 7.3285 |
|
72 |
+
| 6.989 | 0.5361 | 15000 | 7.3269 |
|
73 |
+
| 7.0167 | 0.5718 | 16000 | 7.3243 |
|
74 |
+
| 6.9611 | 0.6076 | 17000 | 7.3273 |
|
75 |
+
| 6.9077 | 0.6433 | 18000 | 7.3256 |
|
76 |
+
| 7.0845 | 0.6790 | 19000 | 7.3235 |
|
77 |
+
| 6.8593 | 0.7148 | 20000 | 7.3207 |
|
78 |
+
| 6.8621 | 0.7505 | 21000 | 7.3216 |
|
79 |
+
| 7.1707 | 0.7863 | 22000 | 7.3225 |
|
80 |
+
| 6.9153 | 0.8220 | 23000 | 7.3209 |
|
81 |
+
| 6.9139 | 0.8577 | 24000 | 7.3217 |
|
82 |
+
| 6.9 | 0.8935 | 25000 | 7.3214 |
|
83 |
+
| 6.7397 | 0.9292 | 26000 | 7.3207 |
|
84 |
+
| 6.9967 | 0.9649 | 27000 | 7.3216 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- PEFT 0.15.2
|
90 |
+
- Transformers 4.45.2
|
91 |
+
- Pytorch 2.4.1+cu121
|
92 |
+
- Datasets 3.0.1
|
93 |
+
- Tokenizers 0.20.1
|