zhaospei commited on
Commit
1a3891e
·
verified ·
1 Parent(s): b0660d7

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -25,7 +25,6 @@
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
  *.tflite filter=lfs diff=lfs merge=lfs -text
30
  *.tgz filter=lfs diff=lfs merge=lfs -text
31
  *.wasm filter=lfs diff=lfs merge=lfs -text
 
25
  *.safetensors filter=lfs diff=lfs merge=lfs -text
26
  saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
  *.tar.* filter=lfs diff=lfs merge=lfs -text
 
28
  *.tflite filter=lfs diff=lfs merge=lfs -text
29
  *.tgz filter=lfs diff=lfs merge=lfs -text
30
  *.wasm filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🧠 Mô hình multi-task
2
+ ## 📝 Giới thiệu
3
+ Mô hình DeBERTa‑v3‑base được fine‑tune theo multi-task learning trên hơn 600 tác vụ thuộc bộ TaskSource, bao gồm Natural Language Inference (NLI), Zero-Shot Classification, token classification và multiple-choice.
4
+ Mô hình được đánh giá mạnh trong zero-shot và đạt thành tích hàng đầu trong các benchmark do IBM tổ chức.
5
+
6
+ ## 📌 Khả năng chính
7
+ Zero-Shot Classification
8
+ Natural Language Inference (NLI)
9
+ Multiple-choice & Token classification
10
+ TaskSource-adapters – Gọi hàng trăm tác vụ chỉ với 1 dòng lệnh
11
+
12
+ ## 📥 Đầu vào & 📤 Đầu ra
13
+ ### 🔍 Zero-Shot Classification
14
+ ```python
15
+ from transformers import pipeline
16
+ classifier = pipeline("zero-shot-classification", model="zhaospei/Model_17")
17
+ classifier("I love programming.", ["tech", "politics", "sports"])
18
+ ```
19
+ ### 🔎 NLI (Natural Language Inference)
20
+ ```python
21
+ from transformers import pipeline
22
+ pipe = pipeline("text-classification", model="zhaospei/Model_17")
23
+ pipe([{"text": "A cat is on the mat.", "text_pair": "An animal is lying down."}])
24
+ ```
25
+ ### 🔌 [TA] Tasksource-adapters: Truy cập hàng trăm tác vụ với 1 dòng
26
+ ```python
27
+ # !pip install tasknet
28
+ import tasknet as tn
29
+
30
+ pipe = tn.load_pipeline('zhaospei/Model_17', 'glue/sst2') # hoạt động với 500+ tác vụ TaskSource
31
+ pipe(['That movie was great!', 'Awful movie.'])
32
+ # [{'label': 'positive', 'score': 0.9956}, {'label': 'negative', 'score': 0.9967}]
33
+ Hỗ trợ các tập như: GLUE, SuperGLUE, ANLI, BIG-Bench, BoolQ, COPA...
34
+ ```
35
+
36
+ ### 🔧 Fine-tuning nhanh với TaskNet
37
+ ```python
38
+ import tasknet as tn
39
+
40
+ model, trainer = tn.Model_Trainer(
41
+ [tn.AutoTask("glue/rte")],
42
+ hparams={"model_name": "zhaospei/Model_17", "learning_rate": 2e-5}
43
+ )
44
+ trainer.train()
45
+ ```
46
+
47
+ ## ⚙️ Cài đặt
48
+ ```bash
49
+ pip install torch transformers tasknet
50
+ ```
51
+ ## 📊 Huấn luyện & Hiệu năng
52
+ Dataset: 600+ tác vụ
53
+ Epochs: 200k steps
54
+ Batch size: 384
55
+ Peak learning rate: 2e-5
56
+ Thiết bị: A30 24GB x2 trong 15 ngày
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[MASK]": 128000
3
+ }
config.json ADDED
@@ -0,0 +1,1059 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/deberta-v3-base",
3
+ "architectures": [
4
+ "DebertaV2ForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifiers_size": [
8
+ 3,
9
+ 2,
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2,
14
+ 1,
15
+ 2,
16
+ 3,
17
+ 2,
18
+ 2,
19
+ 2,
20
+ 3,
21
+ 3,
22
+ 3,
23
+ 3,
24
+ 1,
25
+ 3,
26
+ 3,
27
+ 2,
28
+ 2,
29
+ 3,
30
+ 2,
31
+ 6,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 3,
42
+ 3,
43
+ 3,
44
+ 3,
45
+ 3,
46
+ 3,
47
+ 3,
48
+ 2,
49
+ 2,
50
+ 2,
51
+ 2,
52
+ 5,
53
+ 3,
54
+ 3,
55
+ 3,
56
+ 3,
57
+ 3,
58
+ 3,
59
+ 3,
60
+ 3,
61
+ 2,
62
+ 2,
63
+ 2,
64
+ 3,
65
+ 3,
66
+ 3,
67
+ 3,
68
+ 3,
69
+ 3,
70
+ 3,
71
+ 3,
72
+ 2,
73
+ 2,
74
+ 2,
75
+ 2,
76
+ 47,
77
+ 23,
78
+ 9,
79
+ 1,
80
+ 1,
81
+ 1,
82
+ 1,
83
+ 1,
84
+ 1,
85
+ 1,
86
+ 1,
87
+ 1,
88
+ 1,
89
+ 1,
90
+ 1,
91
+ 1,
92
+ 1,
93
+ 1,
94
+ 1,
95
+ 1,
96
+ 1,
97
+ 1,
98
+ 1,
99
+ 1,
100
+ 1,
101
+ 1,
102
+ 1,
103
+ 1,
104
+ 1,
105
+ 1,
106
+ 1,
107
+ 1,
108
+ 1,
109
+ 1,
110
+ 1,
111
+ 1,
112
+ 1,
113
+ 1,
114
+ 1,
115
+ 1,
116
+ 1,
117
+ 1,
118
+ 1,
119
+ 1,
120
+ 1,
121
+ 1,
122
+ 1,
123
+ 1,
124
+ 1,
125
+ 1,
126
+ 1,
127
+ 1,
128
+ 1,
129
+ 1,
130
+ 1,
131
+ 1,
132
+ 1,
133
+ 1,
134
+ 1,
135
+ 1,
136
+ 1,
137
+ 1,
138
+ 1,
139
+ 1,
140
+ 1,
141
+ 1,
142
+ 1,
143
+ 1,
144
+ 1,
145
+ 1,
146
+ 1,
147
+ 1,
148
+ 1,
149
+ 1,
150
+ 1,
151
+ 1,
152
+ 1,
153
+ 1,
154
+ 1,
155
+ 1,
156
+ 1,
157
+ 1,
158
+ 1,
159
+ 1,
160
+ 1,
161
+ 1,
162
+ 1,
163
+ 1,
164
+ 1,
165
+ 1,
166
+ 1,
167
+ 1,
168
+ 1,
169
+ 1,
170
+ 1,
171
+ 1,
172
+ 1,
173
+ 1,
174
+ 1,
175
+ 1,
176
+ 1,
177
+ 1,
178
+ 1,
179
+ 1,
180
+ 1,
181
+ 1,
182
+ 1,
183
+ 1,
184
+ 1,
185
+ 1,
186
+ 1,
187
+ 1,
188
+ 1,
189
+ 1,
190
+ 1,
191
+ 1,
192
+ 1,
193
+ 1,
194
+ 1,
195
+ 1,
196
+ 1,
197
+ 1,
198
+ 1,
199
+ 1,
200
+ 1,
201
+ 1,
202
+ 1,
203
+ 1,
204
+ 1,
205
+ 1,
206
+ 1,
207
+ 1,
208
+ 2,
209
+ 2,
210
+ 2,
211
+ 2,
212
+ 2,
213
+ 2,
214
+ 20,
215
+ 50,
216
+ 3,
217
+ 3,
218
+ 4,
219
+ 2,
220
+ 8,
221
+ 3,
222
+ 2,
223
+ 2,
224
+ 2,
225
+ 4,
226
+ 20,
227
+ 3,
228
+ 3,
229
+ 3,
230
+ 3,
231
+ 3,
232
+ 174,
233
+ 2,
234
+ 2,
235
+ 41,
236
+ 2,
237
+ 2,
238
+ 51,
239
+ 2,
240
+ 3,
241
+ 2,
242
+ 2,
243
+ 2,
244
+ 3,
245
+ 16,
246
+ 2,
247
+ 18,
248
+ 8,
249
+ 2,
250
+ 17,
251
+ 3,
252
+ 2,
253
+ 4,
254
+ 7,
255
+ 12,
256
+ 7,
257
+ 3,
258
+ 3,
259
+ 42,
260
+ 11,
261
+ 100,
262
+ 13,
263
+ 100,
264
+ 8,
265
+ 1,
266
+ 20,
267
+ 2,
268
+ 2,
269
+ 4,
270
+ 5,
271
+ 3,
272
+ 4,
273
+ 14,
274
+ 2,
275
+ 6,
276
+ 4,
277
+ 2,
278
+ 1,
279
+ 3,
280
+ 10,
281
+ 3,
282
+ 10,
283
+ 4,
284
+ 2,
285
+ 7,
286
+ 6,
287
+ 28,
288
+ 3,
289
+ 6,
290
+ 3,
291
+ 6,
292
+ 5,
293
+ 7,
294
+ 4,
295
+ 2,
296
+ 2,
297
+ 2,
298
+ 6,
299
+ 2,
300
+ 2,
301
+ 7,
302
+ 20,
303
+ 2,
304
+ 9,
305
+ 2,
306
+ 3,
307
+ 13,
308
+ 2,
309
+ 3,
310
+ 2,
311
+ 4,
312
+ 4,
313
+ 2,
314
+ 2,
315
+ 2,
316
+ 2,
317
+ 4,
318
+ 1,
319
+ 2,
320
+ 1,
321
+ 13,
322
+ 3,
323
+ 5,
324
+ 11,
325
+ 37,
326
+ 2,
327
+ 49,
328
+ 40,
329
+ 10,
330
+ 4,
331
+ 1,
332
+ 2,
333
+ 2,
334
+ 1,
335
+ 5,
336
+ 2,
337
+ 3,
338
+ 2,
339
+ 2,
340
+ 12,
341
+ 3,
342
+ 3,
343
+ 2,
344
+ 19,
345
+ 3,
346
+ 1,
347
+ 2,
348
+ 2,
349
+ 2,
350
+ 2,
351
+ 2,
352
+ 1,
353
+ 2,
354
+ 2,
355
+ 1,
356
+ 1,
357
+ 2,
358
+ 3,
359
+ 2,
360
+ 1,
361
+ 4,
362
+ 3,
363
+ 1,
364
+ 1,
365
+ 1,
366
+ 2,
367
+ 3,
368
+ 2,
369
+ 3,
370
+ 1,
371
+ 1,
372
+ 2,
373
+ 1,
374
+ 3,
375
+ 2,
376
+ 2,
377
+ 2,
378
+ 2,
379
+ 2,
380
+ 3,
381
+ 2,
382
+ 2,
383
+ 2,
384
+ 1,
385
+ 3,
386
+ 2,
387
+ 2,
388
+ 1,
389
+ 1,
390
+ 1,
391
+ 1,
392
+ 2,
393
+ 1,
394
+ 1,
395
+ 1,
396
+ 1,
397
+ 4,
398
+ 1,
399
+ 1,
400
+ 1,
401
+ 1,
402
+ 3,
403
+ 1,
404
+ 3,
405
+ 1,
406
+ 2,
407
+ 2,
408
+ 1,
409
+ 2,
410
+ 3,
411
+ 3,
412
+ 2,
413
+ 1,
414
+ 3,
415
+ 1,
416
+ 1,
417
+ 3,
418
+ 1,
419
+ 3,
420
+ 2,
421
+ 1,
422
+ 1,
423
+ 1,
424
+ 2,
425
+ 2,
426
+ 50,
427
+ 50,
428
+ 50,
429
+ 50,
430
+ 2,
431
+ 1,
432
+ 1,
433
+ 1,
434
+ 1,
435
+ 1,
436
+ 1,
437
+ 1,
438
+ 1,
439
+ 1,
440
+ 1,
441
+ 1,
442
+ 2,
443
+ 2,
444
+ 2,
445
+ 2,
446
+ 77,
447
+ 2,
448
+ 1,
449
+ 3,
450
+ 2,
451
+ 2,
452
+ 1,
453
+ 1,
454
+ 2,
455
+ 2,
456
+ 2,
457
+ 2,
458
+ 2,
459
+ 2,
460
+ 2,
461
+ 2,
462
+ 2,
463
+ 3,
464
+ 18,
465
+ 13,
466
+ 2,
467
+ 2,
468
+ 2,
469
+ 2,
470
+ 2,
471
+ 2,
472
+ 4,
473
+ 2,
474
+ 24,
475
+ 23,
476
+ 67,
477
+ 279,
478
+ 3,
479
+ 2,
480
+ 2,
481
+ 1,
482
+ 2,
483
+ 2,
484
+ 3,
485
+ 1,
486
+ 2,
487
+ 3,
488
+ 2,
489
+ 3,
490
+ 3,
491
+ 2,
492
+ 2,
493
+ 4,
494
+ 1,
495
+ 17,
496
+ 3,
497
+ 2,
498
+ 3,
499
+ 2,
500
+ 3,
501
+ 3,
502
+ 2,
503
+ 1,
504
+ 1,
505
+ 3,
506
+ 2,
507
+ 2,
508
+ 3,
509
+ 3,
510
+ 3,
511
+ 1,
512
+ 1
513
+ ],
514
+ "hidden_act": "gelu",
515
+ "hidden_dropout_prob": 0.1,
516
+ "hidden_size": 768,
517
+ "id2label": {
518
+ "0": "entailment",
519
+ "1": "neutral",
520
+ "2": "contradiction"
521
+ },
522
+ "initializer_range": 0.02,
523
+ "intermediate_size": 3072,
524
+ "label2id": {
525
+ "contradiction": 2,
526
+ "entailment": 0,
527
+ "neutral": 1
528
+ },
529
+ "layer_norm_eps": 1e-07,
530
+ "max_position_embeddings": 512,
531
+ "max_relative_positions": -1,
532
+ "model_type": "deberta-v2",
533
+ "norm_rel_ebd": "layer_norm",
534
+ "num_attention_heads": 12,
535
+ "num_hidden_layers": 12,
536
+ "pad_token_id": 0,
537
+ "pooler_dropout": 0,
538
+ "pooler_hidden_act": "gelu",
539
+ "pooler_hidden_size": 768,
540
+ "pos_att_type": [
541
+ "p2c",
542
+ "c2p"
543
+ ],
544
+ "position_biased_input": false,
545
+ "position_buckets": 256,
546
+ "relative_attention": true,
547
+ "share_att_key": true,
548
+ "tasks": [
549
+ "glue/mnli",
550
+ "glue/qnli",
551
+ "glue/rte",
552
+ "glue/wnli",
553
+ "glue/mrpc",
554
+ "glue/qqp",
555
+ "glue/stsb",
556
+ "super_glue/boolq",
557
+ "super_glue/cb",
558
+ "super_glue/multirc",
559
+ "super_glue/wic",
560
+ "super_glue/axg",
561
+ "anli/a1",
562
+ "anli/a2",
563
+ "anli/a3",
564
+ "sick/label",
565
+ "sick/relatedness",
566
+ "sick/entailment_AB",
567
+ "snli",
568
+ "scitail/snli_format",
569
+ "hans",
570
+ "WANLI",
571
+ "recast/recast_verbnet",
572
+ "recast/recast_kg_relations",
573
+ "recast/recast_ner",
574
+ "recast/recast_factuality",
575
+ "recast/recast_puns",
576
+ "recast/recast_megaveridicality",
577
+ "recast/recast_sentiment",
578
+ "recast/recast_verbcorner",
579
+ "probability_words_nli/usnli",
580
+ "probability_words_nli/reasoning_1hop",
581
+ "probability_words_nli/reasoning_2hop",
582
+ "nan-nli/joey234--nan-nli",
583
+ "nli_fever",
584
+ "breaking_nli",
585
+ "conj_nli",
586
+ "fracas",
587
+ "dialogue_nli",
588
+ "mpe",
589
+ "dnc",
590
+ "recast_white/fnplus",
591
+ "recast_white/sprl",
592
+ "recast_white/dpr",
593
+ "joci",
594
+ "robust_nli/IS_CS",
595
+ "robust_nli/LI_LI",
596
+ "robust_nli/ST_WO",
597
+ "robust_nli/PI_SP",
598
+ "robust_nli/PI_CD",
599
+ "robust_nli/ST_SE",
600
+ "robust_nli/ST_NE",
601
+ "robust_nli/ST_LM",
602
+ "robust_nli_is_sd",
603
+ "robust_nli_li_ts",
604
+ "add_one_rte",
605
+ "imppres/implicature_numerals_10_100/log",
606
+ "imppres/implicature_connectives/log",
607
+ "imppres/implicature_modals/log",
608
+ "imppres/implicature_gradable_verb/log",
609
+ "imppres/implicature_gradable_adjective/log",
610
+ "imppres/implicature_numerals_2_3/log",
611
+ "imppres/implicature_quantifiers/log",
612
+ "glue_diagnostics/diagnostics",
613
+ "hlgd",
614
+ "paws/labeled_final",
615
+ "paws/labeled_swap",
616
+ "medical_questions_pairs",
617
+ "conll2003/pos_tags",
618
+ "conll2003/chunk_tags",
619
+ "conll2003/ner_tags",
620
+ "hh-rlhf",
621
+ "model-written-evals",
622
+ "truthful_qa/multiple_choice",
623
+ "fig-qa",
624
+ "bigbench/physical_intuition",
625
+ "bigbench/authorship_verification",
626
+ "bigbench/implicit_relations",
627
+ "bigbench/dyck_languages",
628
+ "bigbench/novel_concepts",
629
+ "bigbench/moral_permissibility",
630
+ "bigbench/metaphor_understanding",
631
+ "bigbench/temporal_sequences",
632
+ "bigbench/sports_understanding",
633
+ "bigbench/analytic_entailment",
634
+ "bigbench/social_support",
635
+ "bigbench/emoji_movie",
636
+ "bigbench/dark_humor_detection",
637
+ "bigbench/suicide_risk",
638
+ "bigbench/fact_checker",
639
+ "bigbench/hhh_alignment",
640
+ "bigbench/formal_fallacies_syllogisms_negation",
641
+ "bigbench/bbq_lite_json",
642
+ "bigbench/cause_and_effect",
643
+ "bigbench/logic_grid_puzzle",
644
+ "bigbench/empirical_judgments",
645
+ "bigbench/human_organs_senses",
646
+ "bigbench/misconceptions",
647
+ "bigbench/strange_stories",
648
+ "bigbench/logical_args",
649
+ "bigbench/known_unknowns",
650
+ "bigbench/cs_algorithms",
651
+ "bigbench/emojis_emotion_prediction",
652
+ "bigbench/cifar10_classification",
653
+ "bigbench/penguins_in_a_table",
654
+ "bigbench/odd_one_out",
655
+ "bigbench/intent_recognition",
656
+ "bigbench/physics",
657
+ "bigbench/conceptual_combinations",
658
+ "bigbench/logical_deduction",
659
+ "bigbench/causal_judgment",
660
+ "bigbench/winowhy",
661
+ "bigbench/arithmetic",
662
+ "bigbench/undo_permutation",
663
+ "bigbench/analogical_similarity",
664
+ "bigbench/social_iqa",
665
+ "bigbench/key_value_maps",
666
+ "bigbench/implicatures",
667
+ "bigbench/real_or_fake_text",
668
+ "bigbench/disambiguation_qa",
669
+ "bigbench/similarities_abstraction",
670
+ "bigbench/movie_dialog_same_or_different",
671
+ "bigbench/english_proverbs",
672
+ "bigbench/presuppositions_as_nli",
673
+ "bigbench/entailed_polarity",
674
+ "bigbench/snarks",
675
+ "bigbench/goal_step_wikihow",
676
+ "bigbench/crass_ai",
677
+ "bigbench/play_dialog_same_or_different",
678
+ "bigbench/hindu_knowledge",
679
+ "bigbench/international_phonetic_alphabet_nli",
680
+ "bigbench/understanding_fables",
681
+ "bigbench/geometric_shapes",
682
+ "bigbench/code_line_description",
683
+ "bigbench/riddle_sense",
684
+ "bigbench/symbol_interpretation",
685
+ "bigbench/irony_identification",
686
+ "bigbench/anachronisms",
687
+ "bigbench/navigate",
688
+ "bigbench/crash_blossom",
689
+ "bigbench/identify_odd_metaphor",
690
+ "bigbench/simple_ethical_questions",
691
+ "bigbench/contextual_parametric_knowledge_conflicts",
692
+ "bigbench/date_understanding",
693
+ "bigbench/figure_of_speech_detection",
694
+ "bigbench/question_selection",
695
+ "bigbench/elementary_math_qa",
696
+ "bigbench/nonsense_words_grammar",
697
+ "bigbench/salient_translation_error_detection",
698
+ "bigbench/epistemic_reasoning",
699
+ "bigbench/movie_recommendation",
700
+ "bigbench/strategyqa",
701
+ "bigbench/tracking_shuffled_objects",
702
+ "bigbench/unit_interpretation",
703
+ "bigbench/reasoning_about_colored_objects",
704
+ "bigbench/discourse_marker_prediction",
705
+ "bigbench/logical_fallacy_detection",
706
+ "bigbench/general_knowledge",
707
+ "bigbench/abstract_narrative_understanding",
708
+ "bigbench/color",
709
+ "bigbench/hyperbaton",
710
+ "bigbench/logical_sequence",
711
+ "bigbench/mnist_ascii",
712
+ "bigbench/fantasy_reasoning",
713
+ "bigbench/mathematical_induction",
714
+ "bigbench/timedial",
715
+ "bigbench/identify_math_theorems",
716
+ "bigbench/checkmate_in_one",
717
+ "bigbench/phrase_relatedness",
718
+ "bigbench/ruin_names",
719
+ "bigbench/gre_reading_comprehension",
720
+ "bigbench/metaphor_boolean",
721
+ "bigbench/sentence_ambiguity",
722
+ "bigbench/vitaminc_fact_verification",
723
+ "bigbench/evaluating_information_essentiality",
724
+ "cos_e/v1.0",
725
+ "cosmos_qa",
726
+ "dream",
727
+ "openbookqa",
728
+ "qasc",
729
+ "quartz",
730
+ "quail",
731
+ "head_qa/en",
732
+ "sciq",
733
+ "social_i_qa",
734
+ "wiki_hop/original",
735
+ "wiqa",
736
+ "piqa",
737
+ "hellaswag",
738
+ "super_glue/copa",
739
+ "balanced-copa",
740
+ "e-CARE",
741
+ "art",
742
+ "winogrande/winogrande_xl",
743
+ "codah/codah",
744
+ "ai2_arc/ARC-Challenge/challenge",
745
+ "ai2_arc/ARC-Easy/challenge",
746
+ "definite_pronoun_resolution",
747
+ "swag/regular",
748
+ "math_qa",
749
+ "glue/cola",
750
+ "glue/sst2",
751
+ "utilitarianism",
752
+ "amazon_counterfactual/en",
753
+ "insincere-questions",
754
+ "toxic_conversations",
755
+ "TuringBench",
756
+ "trec",
757
+ "vitaminc/tals--vitaminc",
758
+ "hope_edi/english",
759
+ "rumoureval_2019/RumourEval2019",
760
+ "ethos/binary",
761
+ "ethos/multilabel",
762
+ "tweet_eval/sentiment",
763
+ "tweet_eval/irony",
764
+ "tweet_eval/offensive",
765
+ "tweet_eval/hate",
766
+ "tweet_eval/emotion",
767
+ "tweet_eval/emoji",
768
+ "tweet_eval/stance_abortion",
769
+ "tweet_eval/stance_atheism",
770
+ "tweet_eval/stance_climate",
771
+ "tweet_eval/stance_feminist",
772
+ "tweet_eval/stance_hillary",
773
+ "discovery/discovery",
774
+ "pragmeval/squinky-informativeness",
775
+ "pragmeval/emobank-arousal",
776
+ "pragmeval/switchboard",
777
+ "pragmeval/squinky-implicature",
778
+ "pragmeval/emobank-valence",
779
+ "pragmeval/mrda",
780
+ "pragmeval/squinky-formality",
781
+ "pragmeval/verifiability",
782
+ "pragmeval/emobank-dominance",
783
+ "pragmeval/persuasiveness-specificity",
784
+ "pragmeval/persuasiveness-strength",
785
+ "pragmeval/persuasiveness-claimtype",
786
+ "pragmeval/pdtb",
787
+ "pragmeval/sarcasm",
788
+ "pragmeval/stac",
789
+ "pragmeval/persuasiveness-premisetype",
790
+ "pragmeval/persuasiveness-eloquence",
791
+ "pragmeval/gum",
792
+ "pragmeval/emergent",
793
+ "pragmeval/persuasiveness-relevance",
794
+ "silicone/dyda_da",
795
+ "silicone/dyda_e",
796
+ "silicone/maptask",
797
+ "silicone/meld_e",
798
+ "silicone/meld_s",
799
+ "silicone/sem",
800
+ "silicone/oasis",
801
+ "silicone/iemocap",
802
+ "lex_glue/eurlex",
803
+ "lex_glue/scotus",
804
+ "lex_glue/ledgar",
805
+ "lex_glue/unfair_tos",
806
+ "lex_glue/case_hold",
807
+ "language-identification",
808
+ "imdb",
809
+ "rotten_tomatoes",
810
+ "ag_news",
811
+ "yelp_review_full/yelp_review_full",
812
+ "financial_phrasebank/sentences_allagree",
813
+ "poem_sentiment",
814
+ "dbpedia_14/dbpedia_14",
815
+ "amazon_polarity/amazon_polarity",
816
+ "app_reviews",
817
+ "hate_speech18",
818
+ "sms_spam",
819
+ "humicroedit/subtask-1",
820
+ "humicroedit/subtask-2",
821
+ "snips_built_in_intents",
822
+ "hate_speech_offensive",
823
+ "yahoo_answers_topics",
824
+ "stackoverflow-questions",
825
+ "hyperpartisan_news",
826
+ "sciie",
827
+ "citation_intent",
828
+ "go_emotions/simplified",
829
+ "scicite",
830
+ "liar",
831
+ "lexical_relation_classification/ROOT09",
832
+ "lexical_relation_classification/BLESS",
833
+ "lexical_relation_classification/CogALexV",
834
+ "lexical_relation_classification/EVALution",
835
+ "lexical_relation_classification/K&H+N",
836
+ "linguisticprobing/coordination_inversion",
837
+ "linguisticprobing/obj_number",
838
+ "linguisticprobing/past_present",
839
+ "linguisticprobing/sentence_length",
840
+ "linguisticprobing/subj_number",
841
+ "linguisticprobing/odd_man_out",
842
+ "linguisticprobing/tree_depth",
843
+ "linguisticprobing/top_constituents",
844
+ "linguisticprobing/bigram_shift",
845
+ "crowdflower/political-media-message",
846
+ "crowdflower/political-media-audience",
847
+ "crowdflower/economic-news",
848
+ "crowdflower/text_emotion",
849
+ "crowdflower/political-media-bias",
850
+ "crowdflower/airline-sentiment",
851
+ "crowdflower/tweet_global_warming",
852
+ "crowdflower/corporate-messaging",
853
+ "crowdflower/sentiment_nuclear_power",
854
+ "ethics/commonsense",
855
+ "ethics/deontology",
856
+ "ethics/justice",
857
+ "ethics/virtue",
858
+ "emo/emo2019",
859
+ "google_wellformed_query",
860
+ "tweets_hate_speech_detection",
861
+ "has_part",
862
+ "wnut_17/wnut_17",
863
+ "ncbi_disease/ncbi_disease",
864
+ "acronym_identification",
865
+ "jnlpba/jnlpba",
866
+ "ontonotes_english/SpeedOfMagic--ontonotes_english",
867
+ "blog_authorship_corpus/gender",
868
+ "blog_authorship_corpus/age",
869
+ "blog_authorship_corpus/job",
870
+ "open_question_type",
871
+ "health_fact",
872
+ "commonsense_qa",
873
+ "mc_taco",
874
+ "ade_corpus_v2/Ade_corpus_v2_classification",
875
+ "discosense",
876
+ "circa",
877
+ "phrase_similarity",
878
+ "scientific-exaggeration-detection",
879
+ "quarel",
880
+ "fever-evidence-related/mwong--fever-related",
881
+ "numer_sense",
882
+ "dynasent/dynabench.dynasent.r1.all/r1",
883
+ "dynasent/dynabench.dynasent.r2.all/r2",
884
+ "Sarcasm_News_Headline",
885
+ "sem_eval_2010_task_8",
886
+ "auditor_review/demo-org--auditor_review",
887
+ "medmcqa",
888
+ "Dynasent_Disagreement",
889
+ "Politeness_Disagreement",
890
+ "SBIC_Disagreement",
891
+ "SChem_Disagreement",
892
+ "Dilemmas_Disagreement",
893
+ "logiqa",
894
+ "wiki_qa",
895
+ "cycic_classification",
896
+ "cycic_multiplechoice",
897
+ "sts-companion",
898
+ "commonsense_qa_2.0",
899
+ "lingnli",
900
+ "monotonicity-entailment",
901
+ "arct",
902
+ "scinli",
903
+ "naturallogic",
904
+ "onestop_qa",
905
+ "moral_stories/full",
906
+ "prost",
907
+ "dynahate",
908
+ "syntactic-augmentation-nli",
909
+ "autotnli",
910
+ "CONDAQA",
911
+ "webgpt_comparisons",
912
+ "synthetic-instruct-gptj-pairwise",
913
+ "scruples",
914
+ "wouldyourather",
915
+ "attempto-nli",
916
+ "defeasible-nli/snli",
917
+ "defeasible-nli/atomic",
918
+ "help-nli",
919
+ "nli-veridicality-transitivity",
920
+ "natural-language-satisfiability",
921
+ "lonli",
922
+ "dadc-limit-nli",
923
+ "FLUTE",
924
+ "strategy-qa",
925
+ "summarize_from_feedback/comparisons",
926
+ "folio",
927
+ "tomi-nli",
928
+ "avicenna",
929
+ "SHP",
930
+ "MedQA-USMLE-4-options-hf",
931
+ "wikimedqa/medwiki",
932
+ "cicero",
933
+ "CREAK",
934
+ "mutual",
935
+ "NeQA",
936
+ "quote-repetition",
937
+ "redefine-math",
938
+ "puzzte",
939
+ "implicatures",
940
+ "race/high",
941
+ "race/middle",
942
+ "race-c",
943
+ "spartqa-yn",
944
+ "spartqa-mchoice",
945
+ "temporal-nli",
946
+ "riddle_sense",
947
+ "clcd-english",
948
+ "twentyquestions",
949
+ "reclor",
950
+ "counterfactually-augmented-imdb",
951
+ "counterfactually-augmented-snli",
952
+ "cnli",
953
+ "boolq-natural-perturbations",
954
+ "acceptability-prediction",
955
+ "equate",
956
+ "ScienceQA_text_only",
957
+ "ekar_english",
958
+ "implicit-hate-stg1",
959
+ "chaos-mnli-ambiguity",
960
+ "headline_cause/en_simple",
961
+ "logiqa-2.0-nli",
962
+ "oasst1_dense_flat/quality",
963
+ "oasst1_dense_flat/toxicity",
964
+ "oasst1_dense_flat/helpfulness",
965
+ "PARARULE-Plus",
966
+ "mindgames",
967
+ "universal_dependencies/en_lines/deprel",
968
+ "universal_dependencies/en_partut/deprel",
969
+ "universal_dependencies/en_ewt/deprel",
970
+ "universal_dependencies/en_gum/deprel",
971
+ "ambient",
972
+ "path-naturalness-prediction",
973
+ "civil_comments/toxicity",
974
+ "civil_comments/severe_toxicity",
975
+ "civil_comments/obscene",
976
+ "civil_comments/threat",
977
+ "civil_comments/insult",
978
+ "civil_comments/identity_attack",
979
+ "civil_comments/sexual_explicit",
980
+ "cloth",
981
+ "dgen",
982
+ "oasst1_pairwise_rlhf_reward",
983
+ "I2D2",
984
+ "args_me",
985
+ "Touche23-ValueEval",
986
+ "starcon",
987
+ "banking77",
988
+ "ruletaker",
989
+ "lsat_qa/all",
990
+ "ConTRoL-nli",
991
+ "tracie",
992
+ "sherliic",
993
+ "sen-making/1",
994
+ "sen-making/2",
995
+ "winowhy",
996
+ "mbib-base/cognitive-bias",
997
+ "mbib-base/fake-news",
998
+ "mbib-base/gender-bias",
999
+ "mbib-base/hate-speech",
1000
+ "mbib-base/linguistic-bias",
1001
+ "mbib-base/political-bias",
1002
+ "mbib-base/racial-bias",
1003
+ "mbib-base/text-level-bias",
1004
+ "robustLR",
1005
+ "v1/gen_train234_test2to10",
1006
+ "logical-fallacy",
1007
+ "parade",
1008
+ "cladder",
1009
+ "subjectivity",
1010
+ "MOH",
1011
+ "VUAC",
1012
+ "TroFi",
1013
+ "sharc_modified/mod",
1014
+ "conceptrules_v2",
1015
+ "disrpt/eng.dep.scidtb.rels",
1016
+ "conll2000",
1017
+ "few-nerd/supervised",
1018
+ "finer-139",
1019
+ "zero-shot-label-nli",
1020
+ "com2sense",
1021
+ "scone",
1022
+ "winodict",
1023
+ "fool-me-twice",
1024
+ "monli",
1025
+ "corr2cause",
1026
+ "lsat_qa/all",
1027
+ "apt",
1028
+ "twitter-financial-news-sentiment",
1029
+ "icl-symbol-tuning-instruct",
1030
+ "SpaceNLI",
1031
+ "propsegment/nli",
1032
+ "HatemojiBuild",
1033
+ "regset",
1034
+ "esci",
1035
+ "chatbot_arena_conversations",
1036
+ "dnd_style_intents",
1037
+ "FLD.v2",
1038
+ "SDOH-NLI",
1039
+ "scifact_entailment",
1040
+ "feasibilityQA",
1041
+ "simple_pair",
1042
+ "AdjectiveScaleProbe-nli",
1043
+ "resnli",
1044
+ "SpaRTUN",
1045
+ "ReSQ",
1046
+ "semantic_fragments_nli",
1047
+ "dataset_train_nli",
1048
+ "babi_nli",
1049
+ "gen_debiased_nli",
1050
+ "imppres/presupposition",
1051
+ "/prag",
1052
+ "blimp-2",
1053
+ "mmlu-4"
1054
+ ],
1055
+ "torch_dtype": "float32",
1056
+ "transformers_version": "4.34.1",
1057
+ "type_vocab_size": 0,
1058
+ "vocab_size": 128100
1059
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d58b81ba665995176104a66f7b7d0b9e2e412564f6b33917e84c4eb920946841
3
+ size 737726552
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7884ba2939b9cdcba1dbcd214c476fff61d9ed98e78223ad76ee08c832b5d0b2
3
+ size 737767858
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": {
9
+ "content": "[UNK]",
10
+ "lstrip": false,
11
+ "normalized": true,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ }
15
+ }
spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
tasks.md ADDED
@@ -0,0 +1,444 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ - 0 babi_nli/counting
2
+ - 1 babi_nli/indefinite-knowledge
3
+ - 2 babi_nli/simple-negation
4
+ - 3 babi_nli/three-arg-relations
5
+ - 4 babi_nli/basic-induction
6
+ - 5 babi_nli/time-reasoning
7
+ - 6 babi_nli/compound-coreference
8
+ - 7 babi_nli/path-finding
9
+ - 8 babi_nli/positional-reasoning
10
+ - 9 babi_nli/conjunction
11
+ - 10 babi_nli/size-reasoning
12
+ - 11 babi_nli/yes-no-questions
13
+ - 12 babi_nli/basic-coreference
14
+ - 13 babi_nli/two-supporting-facts
15
+ - 14 babi_nli/lists-sets
16
+ - 15 babi_nli/two-arg-relations
17
+ - 16 babi_nli/three-supporting-facts
18
+ - 17 babi_nli/basic-deduction
19
+ - 18 babi_nli/single-supporting-fact
20
+ - 19 anli/a1
21
+ - 20 anli/a2
22
+ - 21 anli/a3
23
+ - 22 sick/label
24
+ - 23 sick/relatedness
25
+ - 24 sick/entailment_AB
26
+ - 25 sick/entailment_BA
27
+ - 26 snli
28
+ - 27 scitail/snli_format
29
+ - 28 hans
30
+ - 29 WANLI
31
+ - 30 recast/recast_kg_relations
32
+ - 31 recast/recast_puns
33
+ - 32 recast/recast_factuality
34
+ - 33 recast/recast_megaveridicality
35
+ - 34 recast/recast_verbcorner
36
+ - 35 recast/recast_verbnet
37
+ - 36 recast/recast_ner
38
+ - 37 recast/recast_sentiment
39
+ - 38 probability_words_nli/usnli
40
+ - 39 probability_words_nli/reasoning_1hop
41
+ - 40 probability_words_nli/reasoning_2hop
42
+ - 41 nan-nli/joey234--nan-nli
43
+ - 42 nli_fever
44
+ - 43 breaking_nli
45
+ - 44 conj_nli
46
+ - 45 fracas
47
+ - 46 dialogue_nli
48
+ - 47 mpe
49
+ - 48 dnc
50
+ - 49 gpt3_nli
51
+ - 50 recast_white/fnplus
52
+ - 51 recast_white/sprl
53
+ - 52 recast_white/dpr
54
+ - 53 joci
55
+ - 54 contrast_nli
56
+ - 55 robust_nli/IS_CS
57
+ - 56 robust_nli/LI_LI
58
+ - 57 robust_nli/ST_WO
59
+ - 58 robust_nli/PI_SP
60
+ - 59 robust_nli/PI_CD
61
+ - 60 robust_nli/ST_SE
62
+ - 61 robust_nli/ST_NE
63
+ - 62 robust_nli/ST_LM
64
+ - 63 robust_nli_is_sd
65
+ - 64 robust_nli_li_ts
66
+ - 65 gen_debiased_nli/snli_seq_z
67
+ - 66 gen_debiased_nli/snli_z_aug
68
+ - 67 gen_debiased_nli/snli_par_z
69
+ - 68 gen_debiased_nli/mnli_par_z
70
+ - 69 gen_debiased_nli/mnli_z_aug
71
+ - 70 gen_debiased_nli/mnli_seq_z
72
+ - 71 add_one_rte
73
+ - 72 imppres/presupposition_cleft_uniqueness/presupposition
74
+ - 73 imppres/presupposition_possessed_definites_uniqueness/presupposition
75
+ - 74 imppres/presupposition_possessed_definites_existence/presupposition
76
+ - 75 imppres/presupposition_only_presupposition/presupposition
77
+ - 76 imppres/presupposition_all_n_presupposition/presupposition
78
+ - 77 imppres/presupposition_both_presupposition/presupposition
79
+ - 78 imppres/presupposition_change_of_state/presupposition
80
+ - 79 imppres/presupposition_cleft_existence/presupposition
81
+ - 80 imppres/presupposition_question_presupposition/presupposition
82
+ - 81 imppres/implicature_modals/prag
83
+ - 82 imppres/implicature_numerals_10_100/prag
84
+ - 83 imppres/implicature_numerals_2_3/prag
85
+ - 84 imppres/implicature_gradable_adjective/prag
86
+ - 85 imppres/implicature_quantifiers/prag
87
+ - 86 imppres/implicature_gradable_verb/prag
88
+ - 87 imppres/implicature_connectives/prag
89
+ - 88 imppres/implicature_gradable_adjective/log
90
+ - 89 imppres/implicature_gradable_verb/log
91
+ - 90 imppres/implicature_numerals_2_3/log
92
+ - 91 imppres/implicature_numerals_10_100/log
93
+ - 92 imppres/implicature_modals/log
94
+ - 93 imppres/implicature_quantifiers/log
95
+ - 94 imppres/implicature_connectives/log
96
+ - 95 glue_diagnostics/diagnostics
97
+ - 96 hlgd
98
+ - 97 paws/labeled_final
99
+ - 98 paws/labeled_swap
100
+ - 99 quora
101
+ - 100 medical_questions_pairs
102
+ - 101 conll2003/pos_tags
103
+ - 102 conll2003/chunk_tags
104
+ - 103 conll2003/ner_tags
105
+ - 104 hh-rlhf
106
+ - 105 model-written-evals
107
+ - 106 truthful_qa/multiple_choice
108
+ - 107 fig-qa
109
+ - 108 bigbench/fantasy_reasoning
110
+ - 109 bigbench/nonsense_words_grammar
111
+ - 110 bigbench/analytic_entailment
112
+ - 111 bigbench/logic_grid_puzzle
113
+ - 112 bigbench/geometric_shapes
114
+ - 113 bigbench/key_value_maps
115
+ - 114 bigbench/analogical_similarity
116
+ - 115 bigbench/metaphor_understanding
117
+ - 116 bigbench/metaphor_boolean
118
+ - 117 bigbench/ruin_names
119
+ - 118 bigbench/cs_algorithms
120
+ - 119 bigbench/physical_intuition
121
+ - 120 bigbench/mnist_ascii
122
+ - 121 bigbench/moral_permissibility
123
+ - 122 bigbench/emoji_movie
124
+ - 123 bigbench/snarks
125
+ - 124 bigbench/timedial
126
+ - 125 bigbench/dark_humor_detection
127
+ - 126 bigbench/gre_reading_comprehension
128
+ - 127 bigbench/empirical_judgments
129
+ - 128 bigbench/causal_judgment
130
+ - 129 bigbench/fact_checker
131
+ - 130 bigbench/logical_fallacy_detection
132
+ - 131 bigbench/identify_math_theorems
133
+ - 132 bigbench/dyck_languages
134
+ - 133 bigbench/winowhy
135
+ - 134 bigbench/logical_sequence
136
+ - 135 bigbench/strategyqa
137
+ - 136 bigbench/unit_interpretation
138
+ - 137 bigbench/authorship_verification
139
+ - 138 bigbench/undo_permutation
140
+ - 139 bigbench/epistemic_reasoning
141
+ - 140 bigbench/human_organs_senses
142
+ - 141 bigbench/misconceptions
143
+ - 142 bigbench/international_phonetic_alphabet_nli
144
+ - 143 bigbench/identify_odd_metaphor
145
+ - 144 bigbench/mathematical_induction
146
+ - 145 bigbench/odd_one_out
147
+ - 146 bigbench/reasoning_about_colored_objects
148
+ - 147 bigbench/strange_stories
149
+ - 148 bigbench/evaluating_information_essentiality
150
+ - 149 bigbench/figure_of_speech_detection
151
+ - 150 bigbench/english_proverbs
152
+ - 151 bigbench/general_knowledge
153
+ - 152 bigbench/tracking_shuffled_objects
154
+ - 153 bigbench/physics
155
+ - 154 bigbench/anachronisms
156
+ - 155 bigbench/simple_ethical_questions
157
+ - 156 bigbench/logical_args
158
+ - 157 bigbench/suicide_risk
159
+ - 158 bigbench/sentence_ambiguity
160
+ - 159 bigbench/temporal_sequences
161
+ - 160 bigbench/penguins_in_a_table
162
+ - 161 bigbench/sports_understanding
163
+ - 162 bigbench/hyperbaton
164
+ - 163 bigbench/code_line_description
165
+ - 164 bigbench/question_selection
166
+ - 165 bigbench/disambiguation_qa
167
+ - 166 bigbench/date_understanding
168
+ - 167 bigbench/play_dialog_same_or_different
169
+ - 168 bigbench/salient_translation_error_detection
170
+ - 169 bigbench/irony_identification
171
+ - 170 bigbench/emojis_emotion_prediction
172
+ - 171 bigbench/hindu_knowledge
173
+ - 172 bigbench/conceptual_combinations
174
+ - 173 bigbench/implicatures
175
+ - 174 bigbench/movie_dialog_same_or_different
176
+ - 175 bigbench/social_support
177
+ - 176 bigbench/presuppositions_as_nli
178
+ - 177 bigbench/vitaminc_fact_verification
179
+ - 178 bigbench/hhh_alignment
180
+ - 179 bigbench/implicit_relations
181
+ - 180 bigbench/bbq_lite_json
182
+ - 181 bigbench/phrase_relatedness
183
+ - 182 bigbench/logical_deduction
184
+ - 183 bigbench/discourse_marker_prediction
185
+ - 184 bigbench/movie_recommendation
186
+ - 185 bigbench/real_or_fake_text
187
+ - 186 bigbench/formal_fallacies_syllogisms_negation
188
+ - 187 bigbench/crass_ai
189
+ - 188 blimp/inchoative
190
+ - 189 blimp/principle_A_c_command
191
+ - 190 blimp/matrix_question_npi_licensor_present
192
+ - 191 blimp/wh_questions_subject_gap_long_distance
193
+ - 192 blimp/sentential_subject_island
194
+ - 193 blimp/existential_there_quantifiers_2
195
+ - 194 blimp/sentential_negation_npi_scope
196
+ - 195 blimp/complex_NP_island
197
+ - 196 blimp/principle_A_reconstruction
198
+ - 197 blimp/animate_subject_passive
199
+ - 198 blimp/tough_vs_raising_1
200
+ - 199 blimp/wh_vs_that_with_gap
201
+ - 200 blimp/principle_A_domain_2
202
+ - 201 blimp/npi_present_1
203
+ - 202 blimp/wh_vs_that_with_gap_long_distance
204
+ - 203 blimp/superlative_quantifiers_1
205
+ - 204 blimp/npi_present_2
206
+ - 205 blimp/wh_questions_object_gap
207
+ - 206 blimp/coordinate_structure_constraint_complex_left_branch
208
+ - 207 blimp/coordinate_structure_constraint_object_extraction
209
+ - 208 blimp/left_branch_island_echo_question
210
+ - 209 blimp/drop_argument
211
+ - 210 cos_e/v1.0
212
+ - 211 cosmos_qa
213
+ - 212 dream
214
+ - 213 openbookqa
215
+ - 214 qasc
216
+ - 215 quartz
217
+ - 216 quail
218
+ - 217 head_qa/en
219
+ - 218 sciq
220
+ - 219 social_i_qa
221
+ - 220 wiki_hop
222
+ - 221 wiqa
223
+ - 222 piqa
224
+ - 223 hellaswag
225
+ - 224 super_glue/copa
226
+ - 225 art
227
+ - 226 hendrycks_test/moral_disputes
228
+ - 227 hendrycks_test/moral_scenarios
229
+ - 228 hendrycks_test/nutrition
230
+ - 229 hendrycks_test/philosophy
231
+ - 230 hendrycks_test/prehistory
232
+ - 231 hendrycks_test/professional_accounting
233
+ - 232 hendrycks_test/professional_law
234
+ - 233 hendrycks_test/world_religions
235
+ - 234 hendrycks_test/professional_psychology
236
+ - 235 hendrycks_test/public_relations
237
+ - 236 hendrycks_test/security_studies
238
+ - 237 hendrycks_test/sociology
239
+ - 238 hendrycks_test/us_foreign_policy
240
+ - 239 hendrycks_test/virology
241
+ - 240 hendrycks_test/miscellaneous
242
+ - 241 hendrycks_test/professional_medicine
243
+ - 242 hendrycks_test/medical_genetics
244
+ - 243 hendrycks_test/college_mathematics
245
+ - 244 hendrycks_test/management
246
+ - 245 hendrycks_test/high_school_computer_science
247
+ - 246 hendrycks_test/astronomy
248
+ - 247 hendrycks_test/high_school_chemistry
249
+ - 248 hendrycks_test/high_school_biology
250
+ - 249 hendrycks_test/global_facts
251
+ - 250 hendrycks_test/formal_logic
252
+ - 251 hendrycks_test/elementary_mathematics
253
+ - 252 hendrycks_test/high_school_european_history
254
+ - 253 hendrycks_test/electrical_engineering
255
+ - 254 hendrycks_test/conceptual_physics
256
+ - 255 hendrycks_test/computer_security
257
+ - 256 hendrycks_test/college_physics
258
+ - 257 hendrycks_test/college_medicine
259
+ - 258 hendrycks_test/college_computer_science
260
+ - 259 hendrycks_test/college_chemistry
261
+ - 260 hendrycks_test/college_biology
262
+ - 261 hendrycks_test/econometrics
263
+ - 262 hendrycks_test/clinical_knowledge
264
+ - 263 hendrycks_test/anatomy
265
+ - 264 hendrycks_test/marketing
266
+ - 265 hendrycks_test/machine_learning
267
+ - 266 hendrycks_test/logical_fallacies
268
+ - 267 hendrycks_test/jurisprudence
269
+ - 268 hendrycks_test/international_law
270
+ - 269 hendrycks_test/human_sexuality
271
+ - 270 hendrycks_test/human_aging
272
+ - 271 hendrycks_test/high_school_world_history
273
+ - 272 hendrycks_test/abstract_algebra
274
+ - 273 hendrycks_test/high_school_us_history
275
+ - 274 hendrycks_test/high_school_psychology
276
+ - 275 hendrycks_test/high_school_physics
277
+ - 276 hendrycks_test/high_school_microeconomics
278
+ - 277 hendrycks_test/high_school_mathematics
279
+ - 278 hendrycks_test/high_school_macroeconomics
280
+ - 279 hendrycks_test/high_school_government_and_politics
281
+ - 280 hendrycks_test/high_school_geography
282
+ - 281 hendrycks_test/high_school_statistics
283
+ - 282 hendrycks_test/business_ethics
284
+ - 283 winogrande/winogrande_xl
285
+ - 284 codah/codah
286
+ - 285 ai2_arc/ARC-Challenge/challenge
287
+ - 286 ai2_arc/ARC-Easy/challenge
288
+ - 287 definite_pronoun_resolution
289
+ - 288 swag
290
+ - 289 math_qa
291
+ - 290 utilitarianism
292
+ - 291 TuringBench
293
+ - 292 trec
294
+ - 293 vitaminc/tals--vitaminc
295
+ - 294 hope_edi/english
296
+ - 295 rumoureval_2019/RumourEval2019
297
+ - 296 ethos/binary
298
+ - 297 ethos/multilabel
299
+ - 298 glue/cola
300
+ - 299 glue/sst2
301
+ - 300 glue/mrpc
302
+ - 301 glue/qqp
303
+ - 302 glue/stsb
304
+ - 303 glue/mnli
305
+ - 304 glue/qnli
306
+ - 305 glue/rte
307
+ - 306 glue/wnli
308
+ - 307 super_glue/boolq
309
+ - 308 super_glue/cb
310
+ - 309 super_glue/multirc
311
+ - 310 super_glue/wic
312
+ - 311 super_glue/axg
313
+ - 312 tweet_eval/stance_feminist
314
+ - 313 tweet_eval/stance_atheism
315
+ - 314 tweet_eval/stance_hillary
316
+ - 315 tweet_eval/stance_abortion
317
+ - 316 tweet_eval/sentiment
318
+ - 317 tweet_eval/offensive
319
+ - 318 tweet_eval/stance_climate
320
+ - 319 tweet_eval/irony
321
+ - 320 tweet_eval/emotion
322
+ - 321 tweet_eval/emoji
323
+ - 322 tweet_eval/hate
324
+ - 323 discovery/discovery
325
+ - 324 pragmeval/switchboard
326
+ - 325 pragmeval/squinky-informativeness
327
+ - 326 pragmeval/emobank-arousal
328
+ - 327 pragmeval/emobank-dominance
329
+ - 328 pragmeval/emobank-valence
330
+ - 329 pragmeval/mrda
331
+ - 330 pragmeval/verifiability
332
+ - 331 pragmeval/squinky-implicature
333
+ - 332 pragmeval/squinky-formality
334
+ - 333 pragmeval/gum
335
+ - 334 pragmeval/emergent
336
+ - 335 pragmeval/persuasiveness-premisetype
337
+ - 336 pragmeval/pdtb
338
+ - 337 pragmeval/persuasiveness-eloquence
339
+ - 338 pragmeval/persuasiveness-specificity
340
+ - 339 pragmeval/persuasiveness-strength
341
+ - 340 pragmeval/sarcasm
342
+ - 341 pragmeval/stac
343
+ - 342 pragmeval/persuasiveness-claimtype
344
+ - 343 pragmeval/persuasiveness-relevance
345
+ - 344 lex_glue/eurlex
346
+ - 345 lex_glue/scotus
347
+ - 346 lex_glue/ledgar
348
+ - 347 lex_glue/unfair_tos
349
+ - 348 lex_glue/case_hold
350
+ - 349 imdb
351
+ - 350 rotten_tomatoes
352
+ - 351 ag_news
353
+ - 352 yelp_review_full/yelp_review_full
354
+ - 353 financial_phrasebank/sentences_allagree
355
+ - 354 poem_sentiment
356
+ - 355 dbpedia_14/dbpedia_14
357
+ - 356 amazon_polarity/amazon_polarity
358
+ - 357 app_reviews
359
+ - 358 hate_speech18
360
+ - 359 sms_spam
361
+ - 360 humicroedit/subtask-1
362
+ - 361 humicroedit/subtask-2
363
+ - 362 snips_built_in_intents
364
+ - 363 banking77
365
+ - 364 hate_speech_offensive
366
+ - 365 hyperpartisan_news_detection/byarticle
367
+ - 366 hyperpartisan_news_detection/bypublisher
368
+ - 367 go_emotions/simplified
369
+ - 368 scicite
370
+ - 369 liar
371
+ - 370 lexical_relation_classification/ROOT09
372
+ - 371 lexical_relation_classification/EVALution
373
+ - 372 lexical_relation_classification/CogALexV
374
+ - 373 lexical_relation_classification/BLESS
375
+ - 374 lexical_relation_classification/K&H+N
376
+ - 375 linguisticprobing/coordination_inversion
377
+ - 376 linguisticprobing/odd_man_out
378
+ - 377 linguisticprobing/word_content
379
+ - 378 linguisticprobing/obj_number
380
+ - 379 linguisticprobing/past_present
381
+ - 380 linguisticprobing/tree_depth
382
+ - 381 linguisticprobing/sentence_length
383
+ - 382 linguisticprobing/top_constituents
384
+ - 383 linguisticprobing/bigram_shift
385
+ - 384 linguisticprobing/subj_number
386
+ - 385 crowdflower/sentiment_nuclear_power
387
+ - 386 crowdflower/tweet_global_warming
388
+ - 387 crowdflower/airline-sentiment
389
+ - 388 crowdflower/economic-news
390
+ - 389 crowdflower/political-media-audience
391
+ - 390 crowdflower/political-media-bias
392
+ - 391 crowdflower/political-media-message
393
+ - 392 crowdflower/text_emotion
394
+ - 393 crowdflower/corporate-messaging
395
+ - 394 ethics/commonsense
396
+ - 395 ethics/deontology
397
+ - 396 ethics/justice
398
+ - 397 ethics/virtue
399
+ - 398 emo/emo2019
400
+ - 399 google_wellformed_query
401
+ - 400 tweets_hate_speech_detection
402
+ - 401 adv_glue/adv_sst2
403
+ - 402 adv_glue/adv_qqp
404
+ - 403 adv_glue/adv_mnli
405
+ - 404 adv_glue/adv_mnli_mismatched
406
+ - 405 adv_glue/adv_qnli
407
+ - 406 adv_glue/adv_rte
408
+ - 407 has_part
409
+ - 408 wnut_17/wnut_17
410
+ - 409 ncbi_disease/ncbi_disease
411
+ - 410 acronym_identification
412
+ - 411 jnlpba/jnlpba
413
+ - 412 species_800/species_800
414
+ - 413 ontonotes_english/SpeedOfMagic--ontonotes_english
415
+ - 414 blog_authorship_corpus/gender
416
+ - 415 blog_authorship_corpus/age
417
+ - 416 blog_authorship_corpus/horoscope
418
+ - 417 blog_authorship_corpus/job
419
+ - 418 open_question_type
420
+ - 419 health_fact
421
+ - 420 commonsense_qa
422
+ - 421 mc_taco
423
+ - 422 ade_corpus_v2/Ade_corpus_v2_classification
424
+ - 423 discosense
425
+ - 424 circa
426
+ - 425 code_x_glue_cc_defect_detection
427
+ - 426 code_x_glue_cc_clone_detection_big_clone_bench
428
+ - 427 code_x_glue_cc_code_refinement/medium
429
+ - 428 EffectiveFeedbackStudentWriting
430
+ - 429 promptSentiment
431
+ - 430 promptNLI
432
+ - 431 promptSpoke
433
+ - 432 promptProficiency
434
+ - 433 promptGrammar
435
+ - 434 promptCoherence
436
+ - 435 phrase_similarity
437
+ - 436 scientific-exaggeration-detection
438
+ - 437 quarel
439
+ - 438 fever-evidence-related/mwong--fever-related
440
+ - 439 numer_sense
441
+ - 440 dynasent/dynabench.dynasent.r1.all/r1
442
+ - 441 dynasent/dynabench.dynasent.r2.all/r2
443
+ - 442 Sarcasm_News_Headline
444
+ - 443 sem_eval_2010_task_8
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128000": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_lower_case": false,
48
+ "eos_token": "[SEP]",
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "sp_model_kwargs": {},
54
+ "split_by_punct": false,
55
+ "tokenizer_class": "DebertaV2Tokenizer",
56
+ "unk_token": "[UNK]",
57
+ "vocab_type": "spm"
58
+ }